To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co...To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。展开更多
In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti...In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.展开更多
The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "a...The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.展开更多
The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol ...The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the...The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.展开更多
This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 4...This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable.展开更多
A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examin...The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examined using Transmission Electron Microscope (TEM). The tribological performance of lubricating oils containing combined nanoparticles were determined by four-ball friction and wear tester, and the chemical composition of steel ball with worn surface were analyzed by X-ray Photoelectron Spectrurn(XPS). The results showed that the lubricating oils containing combined nanoparticles had good anti-wear and friction reducing effects, and the tribological properties were optimal when WCeO2+CaCO3=0.6%, WCeO2:WCaCO3=1:1. The extreme pressure value increased by 40.25%, the wear spot diameter reduced by 33.5%, and friction coefficient reduced by 32% compared with 40CD oil. The coordinated action of big and small particles made anti-wear and friction reducing effective. Tribological chemical reactions resulting from the friction surface formed metal calcium, metal cerium and oxides film, and they could fill up the concave surface and protect the worn surface.展开更多
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ...The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.展开更多
This paper proposed a new experimental rig of testing flow boiling heat transfer of refrigerant and lubricant oil mixture. The quantity of oil in the test section can be controlled and regulated conveniently and accur...This paper proposed a new experimental rig of testing flow boiling heat transfer of refrigerant and lubricant oil mixture. The quantity of oil in the test section can be controlled and regulated conveniently and accurately by connecting separate lubricant oil circuit with test section in parallel. It was built up by retrofitting a multiple air-conditioner and installing three oil-separators in serials at the compressor outlet. And so the lubricant oil in the discharged refrigerant gas of compressor can be removed completely.The refrigerant flow rate through test section can be bypassed by the by-path circuit of indoor unit.This experimental rig has advantages such as on-line and continuous oil injection, short time of obtaining stability, flexible operation, simple control, which lead to high efficiency in the research of flow boiling heat transfer of refrigerant and lubricant oil mixture.展开更多
Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characteri...Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characterized by X-ray diffractometry and scanning electron microscopy, and then added into a 48# industrial white oil. Dispersion and wear properties of the compounded lubricating oil were tested. The results show that the copper powders prepared are of high purity, fine dispersibility with mean particle size of about 60 nm and with a narrow particle size distribution. The nanosized copper powders can be well dispersed in the lubricating oil. The addition of the copper powders obviously improves the anti-wear properties of the lubricating oil owing to their good self-repairing performance. Compared with 48# industrial white lubricating oil, the friction coefficient of GCr15 steel with the compounded oil containing 0.6% copper powders reduces by 0.07 and nearly no wear chippings are found in the scratches of the friction counter parts.展开更多
Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the l...Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the lubricating base-oils.For determination of aromatic content by the usual ASTM D3238 method,density,refractive index and molecular weight of the raffinate are required.In this work,a new generalized correlation is developed for de-termination the aromatic content by using only the measured viscosity of lubricating oil.With a mole fraction of aromatic compounds,the kinematic viscosity may be obtained at any temperature between 60-100°C along with their molecular weight and refractive index.展开更多
The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method...The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.展开更多
Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density a...Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.展开更多
To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furf...To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.展开更多
Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthe...Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.展开更多
The traction of a new aviation lubricating oil was measured on a self-made test rig. The calculating formulae of the rheological parameters of the oil such as Erying stress, limiting shear stress and shear elastic mod...The traction of a new aviation lubricating oil was measured on a self-made test rig. The calculating formulae of the rheological parameters of the oil such as Erying stress, limiting shear stress and shear elastic modulus were obtained under the condition of the high shear strain rate in elastohydrodynamic lubrication(EHL). The constitutive equation of this oil was determined and verified by test. The results of experiments show that the behavior of the new aviation lubricating oil behaves as visco-elastic fluid and the theoretical value agrees fairly well with the measured data, which implies that the constitutive equation of this oil is correct and feasible.展开更多
Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range...Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.展开更多
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
基金the Beijing Natural Science Foundation(Grant No.2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。
基金Supported by the Shanghai Municipal Education Commission(06FZ008)Shanghai Municipal Education Commission Key Disciplines(J50603)
文摘In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.
基金Supported by the Fund from the Air Force Armament Department of China for Innovative Research Group(Grant KJ2012283)
文摘The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results.
基金Project(51305331)supported by the National Natural Science Foundation of ChinaProject(2012M511993)supported by China Postdoctoral Science FoundationProject(TPL1202)supported by the Open Fund Program of the State Key Laboratory of Traction Power,Southwest Jiaotong University,China
文摘The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
文摘The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.
文摘This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable.
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
基金the Shanghai Municipal Education Commission (06FZ008)Shanghai Municipal Education Commission Key Disciplines (J50603)
文摘The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examined using Transmission Electron Microscope (TEM). The tribological performance of lubricating oils containing combined nanoparticles were determined by four-ball friction and wear tester, and the chemical composition of steel ball with worn surface were analyzed by X-ray Photoelectron Spectrurn(XPS). The results showed that the lubricating oils containing combined nanoparticles had good anti-wear and friction reducing effects, and the tribological properties were optimal when WCeO2+CaCO3=0.6%, WCeO2:WCaCO3=1:1. The extreme pressure value increased by 40.25%, the wear spot diameter reduced by 33.5%, and friction coefficient reduced by 32% compared with 40CD oil. The coordinated action of big and small particles made anti-wear and friction reducing effective. Tribological chemical reactions resulting from the friction surface formed metal calcium, metal cerium and oxides film, and they could fill up the concave surface and protect the worn surface.
基金the financial support from National Natural Science Foundation of China(project No.50975282)Chongqing Science Foundation for Outstanding Youth(project No. CSTC2008,BA4037)
文摘The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.
文摘This paper proposed a new experimental rig of testing flow boiling heat transfer of refrigerant and lubricant oil mixture. The quantity of oil in the test section can be controlled and regulated conveniently and accurately by connecting separate lubricant oil circuit with test section in parallel. It was built up by retrofitting a multiple air-conditioner and installing three oil-separators in serials at the compressor outlet. And so the lubricant oil in the discharged refrigerant gas of compressor can be removed completely.The refrigerant flow rate through test section can be bypassed by the by-path circuit of indoor unit.This experimental rig has advantages such as on-line and continuous oil injection, short time of obtaining stability, flexible operation, simple control, which lead to high efficiency in the research of flow boiling heat transfer of refrigerant and lubricant oil mixture.
基金Project(51674095)supported by the National Natural Science Foundation of China
文摘Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characterized by X-ray diffractometry and scanning electron microscopy, and then added into a 48# industrial white oil. Dispersion and wear properties of the compounded lubricating oil were tested. The results show that the copper powders prepared are of high purity, fine dispersibility with mean particle size of about 60 nm and with a narrow particle size distribution. The nanosized copper powders can be well dispersed in the lubricating oil. The addition of the copper powders obviously improves the anti-wear properties of the lubricating oil owing to their good self-repairing performance. Compared with 48# industrial white lubricating oil, the friction coefficient of GCr15 steel with the compounded oil containing 0.6% copper powders reduces by 0.07 and nearly no wear chippings are found in the scratches of the friction counter parts.
文摘Lubricating mineral base oils are normally extracted from lube-oil cuts with furfural solvent.Aromatic content in the raffinate phase from extraction process is an essential parameter that affects the quality of the lubricating base-oils.For determination of aromatic content by the usual ASTM D3238 method,density,refractive index and molecular weight of the raffinate are required.In this work,a new generalized correlation is developed for de-termination the aromatic content by using only the measured viscosity of lubricating oil.With a mole fraction of aromatic compounds,the kinematic viscosity may be obtained at any temperature between 60-100°C along with their molecular weight and refractive index.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No.20090032110001)
文摘The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.
文摘To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.
文摘Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.
基金This project is supported by National Key Projects of China(MKPT-2001-004).
文摘The traction of a new aviation lubricating oil was measured on a self-made test rig. The calculating formulae of the rheological parameters of the oil such as Erying stress, limiting shear stress and shear elastic modulus were obtained under the condition of the high shear strain rate in elastohydrodynamic lubrication(EHL). The constitutive equation of this oil was determined and verified by test. The results of experiments show that the behavior of the new aviation lubricating oil behaves as visco-elastic fluid and the theoretical value agrees fairly well with the measured data, which implies that the constitutive equation of this oil is correct and feasible.
基金Projects(2017YFB0306105,2018YFE0306100)supported by the National Key Research and Development Program of China
文摘Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.