Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 wa...AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 was operated on with initial SO(Oxane 5700)as a corneal lubricant.Group 2 was operated on with initial lactated ringer’s solution(LRS)and then replaced with SO as required.Fundus clarity was scored during the surgery.Fluorescein staining was performed to determine the damage to corneal epithelium.RESULTS:Totally 114 eyes of 114 patients were included.Single SO use maintained a clear cornea and provided excellent visualization of surgical image.In group 1,the fundus clarity was grade 3 in 41/45 eyes and grade 2 in 4/45 eyes.In group 2,corneal edema frequently occurred after initial LRS use.The fundus clarity was grade 3 in 19/69 eyes,2 in 37/69 eyes and 1 in 13/69 eyes(P<0.05).SO was applied in 29 eyes of initial LRS use with subsequent corneal edema,which eliminated the corneal edema in 26 eyes.Corneal fluorescein staining score in group 1 was 0 in 28 eyes,1 in 11 eyes and 2 in 6 eyes,and 40,20 and 9,respectively,in group 2(all P>0.05).CONCLUSION:The use of SO as a corneal lubricant is effective and safe for preserving and improving corneal clarity and providing clear surgical field during vitrectomy.展开更多
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubric...Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubricant layer,showing poor durability.Herein,inspired by the high-strength structure of Shell nacre’s“brick-mud”layer,we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder(AP)as mud.Then,a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology.Subsequently,the textured surface was modified by a silane coupling agent.Vinyl-terminated polydimethylsiloxane(PDMS)was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface(LGTS).The prepared LGTS showed good lubrication properties for multiple phases,including various liquids,ice crystals,and solids.It exhibits excellent chemical stability and mechanical durability under deionized water impact,centrifugal test,strong acid solutions,anti/de-icing cycles,and high-intensity friction.Thus,the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling,anti/de-icing,and lubricating protection.展开更多
Bacterial infection and tissue damage caused by friction are two major threats to patients’health in medical catheter implantation.Hydrogels with antibacterial and lubrication effects are competitive candidates for c...Bacterial infection and tissue damage caused by friction are two major threats to patients’health in medical catheter implantation.Hydrogels with antibacterial and lubrication effects are competitive candidates for catheter coating materials.Photothermal therapy(PTT)is a highly efficient bactericidal method.Here,a composite hydrogel containing MXene nanosheets and hydrophilic 3-sulfopropyl methacrylate potassium salt(SPMK)is reported,which is synthesized through the one-pot method and heat-initiated polymerization.The hydrogel shows excellent antibacterial performance against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)in 3 min in the air or 20 min in the water environment under near-infrared light(NIR;808 nm)irradiation.The friction coefficient of the hydrogel is about 0.11,which is 48%lower than that without SPMK.The rapid photothermal sterilization is attributed to the outstanding antibacterial ability and thermal effect of photoactivated MXene.The ultra-low friction is the result of the hydration lubrication mechanism.This study provides a potential strategy for the surface coatings of biomedical catheters,which enables rapid sterilization and extremely low interface resistance between catheters and biological tissues.展开更多
Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by ...Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by the“bricks-and-mortar”structure,we prepared layered graphene oxide(GO)composite finishes strengthened with polyvinyl alcohol(PVA)and borax.Our study demonstrates that the tribological properties of the GO-based coating on 304 stainless steel(SS304)are potentially greatly affected through PVA,GO,and annealing.By optimizing the composition,we achieved the PVA_(40 wt%)/GO_(0.01 wt%)/borax composite coating,which exhibited the lowest average coefficient of friction(COF)of 0.021±0.003(a 97.86%reduction compared to control SS304)with minimal wear and abrasion even in a water environment.We found that the enhanced mechanical characteristics as well as elastic recovery within the coating were attributed to the hydrogen bonds and cross-linking between PVA and borax,which led to stress distribution.Reduced friction was further aided by the formation of a hydrated layer at the friction interface.As a result,the coating demonstrated remarkable durability,maintaining a low COF during long sliding distances(576 m,28,800 cycles,significantly longer than previously reported)without breaking.展开更多
Spherical nano-MoS_(2)(S-MoS_(2))has excellent lubricating properties and potential application value in engine oil additives.Engine soot can enter the engine oil,so the tribological interaction between S-MoS_(2)and d...Spherical nano-MoS_(2)(S-MoS_(2))has excellent lubricating properties and potential application value in engine oil additives.Engine soot can enter the engine oil,so the tribological interaction between S-MoS_(2)and diesel combustion soot(DCS)should be investigated.In this study,DCS was used to simulate engine soot.The interaction was investigated in dioctyl sebacate(DOS),and the interaction mechanism was full characterized.Results showed that S-MoS_(2)and DCS had obvious antagonism effects on lubrication.The 0.5%S-MoS_(2)exhibited good lubricating properties in DOS,which could reduce friction by~22%and wear by~54%.However,after 0.5%S-MoS_(2)was added to the 0.5%DCS contaminated DOS,the lubrication performance was not improved and was even worse than that without S-MoS_(2).When S-MoS_(2)was added for DOS lubrication,a tribofilm containing MoS_(2)formed on the friction surface,but simultaneously adding 0.5%DCS resulted in the disappearance of the MoS_(2)tribofilm.Moreover,under the action of friction heat,DCS and S-MoS_(2)could form hard Mo_(x)C_(y),thereby increasing abrasive wear.Finally,a preliminary deantagonism method was provided.After 2.0%zinc isooctyl dithiophosphate was added to the above antagonistic system,the friction coefficient did not show visible changes,but the wear recovered to a level close to that when only S-MoS_(2)was added.The antiantagonism method is not very satisfactory and some more efficient methods need to be further explored.展开更多
Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the...Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting i...Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O asa base fluid. The mathematical formulation of flow configuration is presented in terms of differential systemthat isnonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heatedsurface with a constant temperature T. Numerical solutions to the governing mathematical model are calculatedby the RK45 algorithm. The results based on the numerical solution against various flow and thermal controllingparameters are presented in terms of line graphs. The specific results depict that the heat flux increases over thelubricated-indexed parameter.展开更多
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar...The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.展开更多
To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant co...To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。展开更多
Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosi...Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.展开更多
The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol ...The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.展开更多
The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to lo...The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy- droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth- od. The efficiency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed films furmed on iron surface. The greater the cohesive energy, the more efficiently the fatty acid would enhance the lubricity of low-sulfur diesel fuel.展开更多
A super-low friction coefficient of 0.0028 is measured under a pressure of 300MPa when the friction pair(the silicon nitride ball sliding on the silicate glass)is lubricated by the mixed aqueous solution of glycerol a...A super-low friction coefficient of 0.0028 is measured under a pressure of 300MPa when the friction pair(the silicon nitride ball sliding on the silicate glass)is lubricated by the mixed aqueous solution of glycerol and boric acid.The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope(AFM)in deionized water,glycerol,boric acid and their mixed aqueous solution.Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus.The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed.It is deduced that the formation of the lubricant film has enough strength to support higher loads,the hydration effect offering the super lower shear resistance.展开更多
In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricati...In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether.The adsorption behavior of the additives on Fe(110)surface and Fe2O3(001)surface was investigated by molecular dynamics(MD)simulations to verify their lubricity performance.The results suggested that adsorption energies of the additives on Fe(110)surface are determined by the van der Waals forces,while adsorptions on Fe2O3(001)surface are significantly attributed to the electrostatic attractive forces.Higher values of adsorption energy of the additives on Fe2O3(001)surface indicate that the additive has more efficient lubricity enhancing properties.展开更多
Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density a...Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.展开更多
Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection ...Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry.展开更多
Graphene has superhigh thermal conductivity up to 5000 W/(m·K),extremely thin thickness,superhigh mechanical strength and nano-lamellar structure with low interlayer shear strength,making it possess great potenti...Graphene has superhigh thermal conductivity up to 5000 W/(m·K),extremely thin thickness,superhigh mechanical strength and nano-lamellar structure with low interlayer shear strength,making it possess great potential in mini-mum quantity lubrication(MQL)grinding.Meanwhile,ionic liquids(ILs)have higher thermal conductivity and better thermal stability than vegetable oils,which are frequently used as MQL grinding fluids.And ILs have extremely low vapor pressure,thereby avoiding film boiling in grinding.These excellent properties make ILs also have immense potential in MQL grinding.However,the grinding performance of graphene and ionic liquid mixed fluid under nano-fluid minimum quantity lubrication(NMQL),and its tribological mechanism on abrasive grain/workpiece grinding interface,are still unclear.This research firstly evaluates the grinding performance of graphene and ionic liquid mixed nanofluids(graphene/IL nanofluids)under NMQL experimentally.The evaluation shows that graphene/IL nanofluids can further strengthen both the cooling and lubricating performances compared with MQL grinding using ILs only.The specific grinding energy and grinding force ratio can be reduced by over 40%at grinding depth of 10μm.Work-piece machined surface roughness can be decreased by over 10%,and grinding temperature can be lowered over 50℃at grinding depth of 30μm.Aiming at the unclear tribological mechanism of graphene/IL nanofluids,molecular dynamics simulations for abrasive grain/workpiece grinding interface are performed to explore the formation mechanism of physical adsorption film.The simulations show that the grinding interface is in a boundary lubrication state.IL molecules absorb in groove-like fractures on grain wear flat face to form boundary lubrication film,and graphene nanosheets can enter into the grinding interface to further decrease the contact area between abrasive grain and workpiece.Compared with MQL grinding,the average tangential grinding force of graphene/IL nanofluids can decrease up to 10.8%.The interlayer shear effect and low interlayer shear strength of graphene nanosheets are the principal causes of enhanced lubricating performance on the grinding interface.EDS and XPS analyses are further carried out to explore the formation mechanism of chemical reaction film.The analyses show that IL base fluid happens chemical reactions with workpiece material,producing FeF_(2),CrF_(3),and BN.The fresh machined surface of workpiece is oxidized by air,producing NiO,Cr_(2)O_(3) and Fe_(2)O_(3).The chemical reaction film is constituted by fluorides,nitrides and oxides together.The combined action of physical adsorption film and chemical reaction film make graphene/IL nano-fluids obtain excellent grinding performance.展开更多
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金Supported by the Shanghai Key Clinical Specialty,Shanghai Eye Disease Research Center(No.2022ZZ01003)the Science and Technology Commission of Shanghai(No.20DZ2270800).
文摘AIM:To evaluate the efficacy and safety of silicone oil(SO)as a corneal lubricant to improve visualization during vitrectomy.METHODS:Patients who underwent vitreoretinal surgery were divided into two groups.Group 1 was operated on with initial SO(Oxane 5700)as a corneal lubricant.Group 2 was operated on with initial lactated ringer’s solution(LRS)and then replaced with SO as required.Fundus clarity was scored during the surgery.Fluorescein staining was performed to determine the damage to corneal epithelium.RESULTS:Totally 114 eyes of 114 patients were included.Single SO use maintained a clear cornea and provided excellent visualization of surgical image.In group 1,the fundus clarity was grade 3 in 41/45 eyes and grade 2 in 4/45 eyes.In group 2,corneal edema frequently occurred after initial LRS use.The fundus clarity was grade 3 in 19/69 eyes,2 in 37/69 eyes and 1 in 13/69 eyes(P<0.05).SO was applied in 29 eyes of initial LRS use with subsequent corneal edema,which eliminated the corneal edema in 26 eyes.Corneal fluorescein staining score in group 1 was 0 in 28 eyes,1 in 11 eyes and 2 in 6 eyes,and 40,20 and 9,respectively,in group 2(all P>0.05).CONCLUSION:The use of SO as a corneal lubricant is effective and safe for preserving and improving corneal clarity and providing clear surgical field during vitrectomy.
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
基金supported by the National Natural Science Foundation of China(No.52205313)Natural Science Foundation of Shandong Province(ZR2022QE161),China Postdoctoral Science Foundation(2023M734093)+1 种基金the Tribology Science Fund of State Key Laboratory of Solid Lubrication(LSL-2312)Scientific Innovation Project for Young Scientists in Shandong Provincial Universities(2023KJ145,2023KJ148).
文摘Recently,various slippery liquid-infused porous surfaces(SLIPS)have been fabricated for the protection of various materials.However,these SLIPSs are limited by their underlying storage structure and superficial lubricant layer,showing poor durability.Herein,inspired by the high-strength structure of Shell nacre’s“brick-mud”layer,we fabricated an all-inorganic composite coating by using wet chemically etched MXene as a brick and an aluminum phosphate binder(AP)as mud.Then,a series of microwell-array structures were designed and prepared on the coating via nanosecond ultrafast laser writing ablation technology.Subsequently,the textured surface was modified by a silane coupling agent.Vinyl-terminated polydimethylsiloxane(PDMS)was tightly grafted onto the porous surface through a thiol-ene click reaction to obtain lubricant grafted texture surface(LGTS).The prepared LGTS showed good lubrication properties for multiple phases,including various liquids,ice crystals,and solids.It exhibits excellent chemical stability and mechanical durability under deionized water impact,centrifugal test,strong acid solutions,anti/de-icing cycles,and high-intensity friction.Thus,the proposed strategy for constructing robust LGTS will greatly promote theoretical research on super wetting interfacial materials and their applications in the fields of antifouling,anti/de-icing,and lubricating protection.
基金support from the National Natural Science Foundation of China(No.52175187)the Fundamental Research Funds for the Central Universities(No.3102019JC001)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2023-TS-06).
文摘Bacterial infection and tissue damage caused by friction are two major threats to patients’health in medical catheter implantation.Hydrogels with antibacterial and lubrication effects are competitive candidates for catheter coating materials.Photothermal therapy(PTT)is a highly efficient bactericidal method.Here,a composite hydrogel containing MXene nanosheets and hydrophilic 3-sulfopropyl methacrylate potassium salt(SPMK)is reported,which is synthesized through the one-pot method and heat-initiated polymerization.The hydrogel shows excellent antibacterial performance against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)in 3 min in the air or 20 min in the water environment under near-infrared light(NIR;808 nm)irradiation.The friction coefficient of the hydrogel is about 0.11,which is 48%lower than that without SPMK.The rapid photothermal sterilization is attributed to the outstanding antibacterial ability and thermal effect of photoactivated MXene.The ultra-low friction is the result of the hydration lubrication mechanism.This study provides a potential strategy for the surface coatings of biomedical catheters,which enables rapid sterilization and extremely low interface resistance between catheters and biological tissues.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470202)the International Partnership Program of Chinese Academy of Sciences Project for Grand Challenges(No.307GJHZ2022034GC)+1 种基金the Science and Technology Development Fund of Pudong New District(No.PKJ2020-N007)the Fundamental Research Funds for the Central Universities(No.222201717003)for their financial support.
文摘Coatings serve as ideal protective films for mechanical systems,providing dependable as well as efficient lubrication because of their unique structure along with outstanding tribological characteristics.Inspired by the“bricks-and-mortar”structure,we prepared layered graphene oxide(GO)composite finishes strengthened with polyvinyl alcohol(PVA)and borax.Our study demonstrates that the tribological properties of the GO-based coating on 304 stainless steel(SS304)are potentially greatly affected through PVA,GO,and annealing.By optimizing the composition,we achieved the PVA_(40 wt%)/GO_(0.01 wt%)/borax composite coating,which exhibited the lowest average coefficient of friction(COF)of 0.021±0.003(a 97.86%reduction compared to control SS304)with minimal wear and abrasion even in a water environment.We found that the enhanced mechanical characteristics as well as elastic recovery within the coating were attributed to the hydrogen bonds and cross-linking between PVA and borax,which led to stress distribution.Reduced friction was further aided by the formation of a hydrated layer at the friction interface.As a result,the coating demonstrated remarkable durability,maintaining a low COF during long sliding distances(576 m,28,800 cycles,significantly longer than previously reported)without breaking.
基金supported by the National Natural Science Foundation of China(No.52075144)the Natural Science Foundation for Colleges and Universities in Anhui Province(No.2022AH010096).
文摘Spherical nano-MoS_(2)(S-MoS_(2))has excellent lubricating properties and potential application value in engine oil additives.Engine soot can enter the engine oil,so the tribological interaction between S-MoS_(2)and diesel combustion soot(DCS)should be investigated.In this study,DCS was used to simulate engine soot.The interaction was investigated in dioctyl sebacate(DOS),and the interaction mechanism was full characterized.Results showed that S-MoS_(2)and DCS had obvious antagonism effects on lubrication.The 0.5%S-MoS_(2)exhibited good lubricating properties in DOS,which could reduce friction by~22%and wear by~54%.However,after 0.5%S-MoS_(2)was added to the 0.5%DCS contaminated DOS,the lubrication performance was not improved and was even worse than that without S-MoS_(2).When S-MoS_(2)was added for DOS lubrication,a tribofilm containing MoS_(2)formed on the friction surface,but simultaneously adding 0.5%DCS resulted in the disappearance of the MoS_(2)tribofilm.Moreover,under the action of friction heat,DCS and S-MoS_(2)could form hard Mo_(x)C_(y),thereby increasing abrasive wear.Finally,a preliminary deantagonism method was provided.After 2.0%zinc isooctyl dithiophosphate was added to the above antagonistic system,the friction coefficient did not show visible changes,but the wear recovered to a level close to that when only S-MoS_(2)was added.The antiantagonism method is not very satisfactory and some more efficient methods need to be further explored.
基金Funded by Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202212905)Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxmX0453)。
文摘Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
文摘Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O asa base fluid. The mathematical formulation of flow configuration is presented in terms of differential systemthat isnonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heatedsurface with a constant temperature T. Numerical solutions to the governing mathematical model are calculatedby the RK45 algorithm. The results based on the numerical solution against various flow and thermal controllingparameters are presented in terms of line graphs. The specific results depict that the heat flux increases over thelubricated-indexed parameter.
基金supported by the Talent Fund of Beijing Jiaotong University(No,2023XKRC015)the National Natural Science Foundation of China(Nos.52172081,52073010 and 52373259).
文摘The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
基金the Beijing Natural Science Foundation(Grant No.2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘To address the problem of identifying multiple types of additives in lubricating oil,a method based on midinfrared spectral band selection using the eXtreme Gradient Boosting(XGBoost)algorithm combined with the ant colony optimization(ACO)algorithm is proposed.The XGBoost algorithm was used to train and test three additives,T534(alkyl diphenylamine),T308(isooctyl acid thiophospholipid octadecylamine),and T306(trimethylphenol phosphate),separately,in order to screen for the optimal combination of spectral bands for each additive.The ACO algorithm was used to optimize the parameters of the XGBoost algorithm to improve the identification accuracy.During this process,the support vector machine(SVM)and hybrid bat algorithms(HBA)were included as a comparison,generating four models:ACO-XGBoost,ACO-SVM,HBA-XGboost,and HBA-SVM.The results showed that all four models could identify the three additives efficiently,with the ACO-XGBoost model achieving 100%recognition of all three additives.In addition,the generalizability of the ACO-XGBoost model was further demonstrated by predicting a lubricating oil containing the three additives prepared in our laboratory and a collected sample of commercial oil currently in use。
基金supported in part by the National Natural Science Foundation of China(Nos.52275126 and 52105159)the Science and Technology Planning Project of Shaanxi Province,China(No.2024GX-YBXM-292).
文摘Lubricant diagnosis serves as a crucial accordance for condition-based maintenance(CBM)involving oil changing and wear examination of critical parts in equipment.However,the accuracy of traditional end-to-end diagnosis models is often limited by the inconsistency and random fluctuations in multiple monitoring indicators.To address this,an attribute-driven adaptive diagnosis method is developed,involving three attributes:physicochemical,contamination,and wear.Correspondingly,a fuzzy fault tree(termed FFT)-based model is constructed containing the logic correlations from monitoring indicators to attributes and to lubricant failures.In particular,inference rules are integrated to mitigate conflicts arising from the reverse degradation of multiple indicators.With this model,the lubricant conditions can be accurately assessed through rule-based reasoning.Furthermore,to enhance its intelligence,the model is dynamically optimized with lubricant analysis knowledge and monitoring data.For verification,the developed model is tested with lubricant samples from both the fatigue experiment and actual aero-engines.Fatigue experiments reveal that the proposed model can improve the lubricant diagnosis accuracy from 73.4%to 92.6%compared with the existing methods.While for the engine lubricant test,a high accuracy of 90%was achieved.
基金Project(51305331)supported by the National Natural Science Foundation of ChinaProject(2012M511993)supported by China Postdoctoral Science FoundationProject(TPL1202)supported by the Open Fund Program of the State Key Laboratory of Traction Power,Southwest Jiaotong University,China
文摘The tribological tests were performed using Nitinol 60 alloy pin sliding over GCr15 steel disc in the tribometer system. Four kinds of oils were experimentally investigated as lubrication oils for lubricating Nitinol 60 alloy in the boundary lubrication regime. The experimental results were compared with a reference dry friction. It was found that Nitinol 60 alloy can be lubricated significantly and has shown remarkable lubrication performance. A superlubricity behavior of Nitinol 60 alloy was observed under castor oil lubrication. An ultra-low coefficient of friction of Nitinol 60 alloy about 0.008 between Nitinol 60 alloy and GCr15 steel was obtained under castor oil lubrication condition after a running-in period. Accordingly, the present study is focused on the lubrication behaviors of castor oil as potential lubrication oil for Nitinol 60 alloy. In the presence of castor oil, coefficient of friction is kept at 0.008 at steady state, corresponding to so-called superlubricity regime (when sliding is then approaching pure rolling). The mechanism of superlubricity is attributed to the triboformed OH-terminated surfaces from friction-induced dissociation of castor oil and the boundary lubrication films formed on the contact surface due to high polarity and long chain of castor oil allowing strong interactions with the lubricated surfaces.
基金supported by the Fundamental Research Funds for the Central Universities of China(11CX06036A)
文摘The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re- sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy- droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth- od. The efficiency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed films furmed on iron surface. The greater the cohesive energy, the more efficiently the fatty acid would enhance the lubricity of low-sulfur diesel fuel.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50721004,50727007 and 51075227the Basic Research Program of Shenzhen(0021539012100521066).
文摘A super-low friction coefficient of 0.0028 is measured under a pressure of 300MPa when the friction pair(the silicon nitride ball sliding on the silicate glass)is lubricated by the mixed aqueous solution of glycerol and boric acid.The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope(AFM)in deionized water,glycerol,boric acid and their mixed aqueous solution.Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus.The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed.It is deduced that the formation of the lubricant film has enough strength to support higher loads,the hydration effect offering the super lower shear resistance.
基金financially supported by "the Fundamental Research Funds for the Central Universities,China"(11CX06036A)
文摘In this work,fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel.Tribological evaluation obtained from the High-Frequency Reciprocating Rig(HFRR)apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether.The adsorption behavior of the additives on Fe(110)surface and Fe2O3(001)surface was investigated by molecular dynamics(MD)simulations to verify their lubricity performance.The results suggested that adsorption energies of the additives on Fe(110)surface are determined by the van der Waals forces,while adsorptions on Fe2O3(001)surface are significantly attributed to the electrostatic attractive forces.Higher values of adsorption energy of the additives on Fe2O3(001)surface indicate that the additive has more efficient lubricity enhancing properties.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.
基金Supported by National Key Research and Development Program of China(Grant No.2020YFB2010500)National Natural Science Foundation of China(Grant Nos.51975305,52105457)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2020KE027).
文摘Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant Nos.ZR2022ME208,ZR2020QE181)National Natural Science Foundation of China(Grant Nos.51705272,52005281)+1 种基金China Postdoctoral Science Foundation(Grant No.2018M642628)111 project(Grant No.D21017).
文摘Graphene has superhigh thermal conductivity up to 5000 W/(m·K),extremely thin thickness,superhigh mechanical strength and nano-lamellar structure with low interlayer shear strength,making it possess great potential in mini-mum quantity lubrication(MQL)grinding.Meanwhile,ionic liquids(ILs)have higher thermal conductivity and better thermal stability than vegetable oils,which are frequently used as MQL grinding fluids.And ILs have extremely low vapor pressure,thereby avoiding film boiling in grinding.These excellent properties make ILs also have immense potential in MQL grinding.However,the grinding performance of graphene and ionic liquid mixed fluid under nano-fluid minimum quantity lubrication(NMQL),and its tribological mechanism on abrasive grain/workpiece grinding interface,are still unclear.This research firstly evaluates the grinding performance of graphene and ionic liquid mixed nanofluids(graphene/IL nanofluids)under NMQL experimentally.The evaluation shows that graphene/IL nanofluids can further strengthen both the cooling and lubricating performances compared with MQL grinding using ILs only.The specific grinding energy and grinding force ratio can be reduced by over 40%at grinding depth of 10μm.Work-piece machined surface roughness can be decreased by over 10%,and grinding temperature can be lowered over 50℃at grinding depth of 30μm.Aiming at the unclear tribological mechanism of graphene/IL nanofluids,molecular dynamics simulations for abrasive grain/workpiece grinding interface are performed to explore the formation mechanism of physical adsorption film.The simulations show that the grinding interface is in a boundary lubrication state.IL molecules absorb in groove-like fractures on grain wear flat face to form boundary lubrication film,and graphene nanosheets can enter into the grinding interface to further decrease the contact area between abrasive grain and workpiece.Compared with MQL grinding,the average tangential grinding force of graphene/IL nanofluids can decrease up to 10.8%.The interlayer shear effect and low interlayer shear strength of graphene nanosheets are the principal causes of enhanced lubricating performance on the grinding interface.EDS and XPS analyses are further carried out to explore the formation mechanism of chemical reaction film.The analyses show that IL base fluid happens chemical reactions with workpiece material,producing FeF_(2),CrF_(3),and BN.The fresh machined surface of workpiece is oxidized by air,producing NiO,Cr_(2)O_(3) and Fe_(2)O_(3).The chemical reaction film is constituted by fluorides,nitrides and oxides together.The combined action of physical adsorption film and chemical reaction film make graphene/IL nano-fluids obtain excellent grinding performance.