The development and utilization of lunar resources are entering a critical stage.Immediate focus is needed on key technologies for in-situ resource utilization(ISRU)and lunar base construction.This paper comparatively...The development and utilization of lunar resources are entering a critical stage.Immediate focus is needed on key technologies for in-situ resource utilization(ISRU)and lunar base construction.This paper comparatively analyzes the basic characteristics of lunar regolith samples returned from Chang'e-5(CE-5),Apollo,and Luna missions,focusing on their physical,mechanical,mineral,chemical,and morphological parameters.Given the limited availability of lunar regolith,more than 50 lunar regolith simulants are summarized.The differences between lunar regolith and simulants concerning these parameters are discussed.To facilitate the construction of lunar bases,this article summarizes the advancements in research on construction materials derived from lunar regolith simulants.Based on statistical results,lunar regolith simulant-based composites are classified into 5 types by their strengthening and toughening mechanisms,and a comprehensive analysis of molding methods,preparation conditions,and mechanical properties is conducted.Furthermore,the potential lunar base construction forms are reviewed,and the adaptability of lunar regolith simulant-based composites and lunar base construction methods are proposed.The key demands of lunar bases constructed with lunar regolith-based composites are discussed,including energy demand,in-situ buildability,service performance,and structural availability.This progress contributes to providing essential material and methodological support for future lunar construction.展开更多
In this paper, to meet the environmental requirements for the lunar surface, we outline the design of an intelligent shape memory polymer(SMP) capsule structure of lightweight using a flexible composite skin. Key brea...In this paper, to meet the environmental requirements for the lunar surface, we outline the design of an intelligent shape memory polymer(SMP) capsule structure of lightweight using a flexible composite skin. Key breakthrough technology for manufacturing the high-performance multilayer composite is utilized to realize the requirements for folding and compressing during launching, and unfolding on the lunar surface, taking into account the current opposing requirements for launching and the space transportation mission of large equipment. Based upon the reduced constraints, better expansibility and easy assembly, this lunar base is suited to the initial and interim phases of a moon construction, and provides a national solution in the construction of lunar base on moon.展开更多
The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission...The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.展开更多
The construction of a lunar base and habitation on the Moon has always been on researchers’minds.Building materials used in in situ lunar resources are of great significance for saving expensive space freight.In this...The construction of a lunar base and habitation on the Moon has always been on researchers’minds.Building materials used in in situ lunar resources are of great significance for saving expensive space freight.In this study,a new type of lunar soil simulant named Beihang(BH)-1 was developed.The chemical mineral composition and microstructure of BH-1 closely resemble those of real lunar soil,as verified by X-ray fluorescence spectroscopy(XRF),X-ray diffraction(XRD),scanning electron microscopy(SEM),and reflectance spectra.This research also synthesized a geopolymer based on BH-1 cured at simulated lunar atmospheric conditions.We also investigated the effect of supplementing aluminum(Al)sources on the enhancement of geopolymer strength based on BH-1.The rheological behavior of alkali-activated BH-1 pastes was determined for workability.XRF,XRD,Fourier transform infrared spectroscopy,SEM coupled with energy dispersive spectroscopy,and 27Al magic angle spinningnuclear magnetic resonance were used to characterize resulting geopolymers.Rheological test findings showed that the rheology of BH-1 pastes fits the Herschel–Bulkley model,and they behaved like a shear-thinning fluid.The results showed that the 28-day compressive strength of the BH-1 geopolymer was improved by up to 100.8%.Meanwhile,the weight of additives required to produce per unit strength decreased,significantly reducing the mass of materials transported from the Earth for the construction of lunar infrastructure and saving space transportation costs.Microscopic analyses showed that the mechanism to improve the mechanical properties of the BH-1 geopolymer by adding an additional Al source enhances the replacement of silicon atoms by Al atoms in the silicon–oxygen group and generates a more complete and dense amorphous gel structure.展开更多
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th...Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases.展开更多
【目的】为了深入了解月面建造过程中月壤的力学特性,评估月基装备性能,优化月面建造作业,开展离散元法(discrete element method,DEM)在月壤接触力学领域的应用调查研究,旨在利用离散元法为未来月球基地建设提供理论指导和技术支持。...【目的】为了深入了解月面建造过程中月壤的力学特性,评估月基装备性能,优化月面建造作业,开展离散元法(discrete element method,DEM)在月壤接触力学领域的应用调查研究,旨在利用离散元法为未来月球基地建设提供理论指导和技术支持。【研究现状】基于地质勘探、资源采集及运输、建造作业等月面原位建造任务场景,分析月壤颗粒的建模与参数标定,介绍月基装备与月壤的接触作用研究现状,概述离散元法在钻-壤作用模拟、铲-壤作用模拟、轮-壤作用模拟及足-壤作用模拟中的应用,探讨基于离散元法的天然月基承载力分析。【结论与展望】提出降低几何模型复杂度、优化粒间接触模型及参数是提高宏观尺度月壤离散元建模精度以应对大规模月面建造场景的有效方法。认为利用离散元法进行铲挖式月壤采集装置及足式月球车设计在未来可以为月面建造提供可靠的技术支持。面向月面建造,离散元法将在水冰资源利用、建筑物月面承载力分析等方面提供科学依据。展开更多
基金supported by National Natural Science Foundation of China(No.42172319)the Fundamental Research Funds for the Central Universities(No.2023ZKPYLJ01)。
文摘The development and utilization of lunar resources are entering a critical stage.Immediate focus is needed on key technologies for in-situ resource utilization(ISRU)and lunar base construction.This paper comparatively analyzes the basic characteristics of lunar regolith samples returned from Chang'e-5(CE-5),Apollo,and Luna missions,focusing on their physical,mechanical,mineral,chemical,and morphological parameters.Given the limited availability of lunar regolith,more than 50 lunar regolith simulants are summarized.The differences between lunar regolith and simulants concerning these parameters are discussed.To facilitate the construction of lunar bases,this article summarizes the advancements in research on construction materials derived from lunar regolith simulants.Based on statistical results,lunar regolith simulant-based composites are classified into 5 types by their strengthening and toughening mechanisms,and a comprehensive analysis of molding methods,preparation conditions,and mechanical properties is conducted.Furthermore,the potential lunar base construction forms are reviewed,and the adaptability of lunar regolith simulant-based composites and lunar base construction methods are proposed.The key demands of lunar bases constructed with lunar regolith-based composites are discussed,including energy demand,in-situ buildability,service performance,and structural availability.This progress contributes to providing essential material and methodological support for future lunar construction.
基金supported by Natural Science Foundation of China, 51603123
文摘In this paper, to meet the environmental requirements for the lunar surface, we outline the design of an intelligent shape memory polymer(SMP) capsule structure of lightweight using a flexible composite skin. Key breakthrough technology for manufacturing the high-performance multilayer composite is utilized to realize the requirements for folding and compressing during launching, and unfolding on the lunar surface, taking into account the current opposing requirements for launching and the space transportation mission of large equipment. Based upon the reduced constraints, better expansibility and easy assembly, this lunar base is suited to the initial and interim phases of a moon construction, and provides a national solution in the construction of lunar base on moon.
基金supported by the National Natural Science Foundation of China(Nos.52125903 and 52339001).
文摘The Moon,as the closest celestial body to the Earth,plays a pivotal role in the progression of deep space exploration,and the establishment of research outposts on its surface represents a crucial step in this mission.Lunar lava tubes are special underground caves formed by volcanic eruptions and are considered as ideal natural shelters and scientific laboratories for lunar base construction.This paper begins with an in-depth overview of the geological origins,exploration history,and distribution locations of lunar lava tubes.Subsequently,it delves into the presentation of four distinctive advantages and typical concepts for constructing bases within lava tubes,summarizing the ground-based attempts made thus far in lunar lava tube base construction.Field studies conducted on a lava tube in Hainan revealed rock compositions similar to those found during the Apollo missions and clear lava tube structures,making it a promising analog site.Lastly,the challenges and opportunities encountered in the field of geotechnical engineering regarding the establishment of lunar lava tube bases are discussed,encompassing cave exploration technologies,in-situ testing methods,geomechanical properties under lunar extreme environments,base design and structural stability assessment,excavation and reinforcement techniques,and simulated Earth-based lava tube base.
基金This research was supported by the National Key Research and Development(R&D)Program of China(2018YFB1600100)National Natural Science Foundation of China(51978029 and 51622805)Shanghai Pujiang Program.The authors also acknowledge NASA/Lunar and Planetary Institute for permission of the figures in"Lunar sourcebook:a user’s guide to the moon"to be reused in this study。
文摘The construction of a lunar base and habitation on the Moon has always been on researchers’minds.Building materials used in in situ lunar resources are of great significance for saving expensive space freight.In this study,a new type of lunar soil simulant named Beihang(BH)-1 was developed.The chemical mineral composition and microstructure of BH-1 closely resemble those of real lunar soil,as verified by X-ray fluorescence spectroscopy(XRF),X-ray diffraction(XRD),scanning electron microscopy(SEM),and reflectance spectra.This research also synthesized a geopolymer based on BH-1 cured at simulated lunar atmospheric conditions.We also investigated the effect of supplementing aluminum(Al)sources on the enhancement of geopolymer strength based on BH-1.The rheological behavior of alkali-activated BH-1 pastes was determined for workability.XRF,XRD,Fourier transform infrared spectroscopy,SEM coupled with energy dispersive spectroscopy,and 27Al magic angle spinningnuclear magnetic resonance were used to characterize resulting geopolymers.Rheological test findings showed that the rheology of BH-1 pastes fits the Herschel–Bulkley model,and they behaved like a shear-thinning fluid.The results showed that the 28-day compressive strength of the BH-1 geopolymer was improved by up to 100.8%.Meanwhile,the weight of additives required to produce per unit strength decreased,significantly reducing the mass of materials transported from the Earth for the construction of lunar infrastructure and saving space transportation costs.Microscopic analyses showed that the mechanism to improve the mechanical properties of the BH-1 geopolymer by adding an additional Al source enhances the replacement of silicon atoms by Al atoms in the silicon–oxygen group and generates a more complete and dense amorphous gel structure.
基金supported by the National Key Research and Development Program of China(Nos.2021YFF0500300 and 2023YFB3711300)the Strategic Research and Consulting Project of the Chinese Academy of Engineering(Nos.2023-XZ-90 and 2023-JB-09-10).
文摘Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases.
文摘【目的】为了深入了解月面建造过程中月壤的力学特性,评估月基装备性能,优化月面建造作业,开展离散元法(discrete element method,DEM)在月壤接触力学领域的应用调查研究,旨在利用离散元法为未来月球基地建设提供理论指导和技术支持。【研究现状】基于地质勘探、资源采集及运输、建造作业等月面原位建造任务场景,分析月壤颗粒的建模与参数标定,介绍月基装备与月壤的接触作用研究现状,概述离散元法在钻-壤作用模拟、铲-壤作用模拟、轮-壤作用模拟及足-壤作用模拟中的应用,探讨基于离散元法的天然月基承载力分析。【结论与展望】提出降低几何模型复杂度、优化粒间接触模型及参数是提高宏观尺度月壤离散元建模精度以应对大规模月面建造场景的有效方法。认为利用离散元法进行铲挖式月壤采集装置及足式月球车设计在未来可以为月面建造提供可靠的技术支持。面向月面建造,离散元法将在水冰资源利用、建筑物月面承载力分析等方面提供科学依据。