Auscultation is crucial for the diagnosis of respiratory system diseases.However,traditional stethoscopes have inherent limitations,such as inter-listener variability and subjectivity,and they cannot record respirator...Auscultation is crucial for the diagnosis of respiratory system diseases.However,traditional stethoscopes have inherent limitations,such as inter-listener variability and subjectivity,and they cannot record respiratory sounds for offline/retrospective diagnosis or remote prescriptions in telemedicine.The emergence of digital stethoscopes has overcome these limitations by allowing physicians to store and share respiratory sounds for consultation and education.On this basis,machine learning,particularly deep learning,enables the fully-automatic analysis of lung sounds that may pave the way for intelligent stethoscopes.This review thus aims to provide a comprehensive overview of deep learning algorithms used for lung sound analysis to emphasize the significance of artificial intelligence(AI)in this field.We focus on each component of deep learning-based lung sound analysis systems,including the task categories,public datasets,denoising methods,and,most importantly,existing deep learning methods,i.e.,the state-of-the-art approaches to convert lung sounds into two-dimensional(2D)spectrograms and use convolutional neural networks for the end-to-end recognition of respiratory diseases or abnormal lung sounds.Additionally,this review highlights current challenges in this field,including the variety of devices,noise sensitivity,and poor interpretability of deep models.To address the poor reproducibility and variety of deep learning in this field,this review also provides a scalable and flexible open-source framework that aims to standardize the algorithmic workflow and provide a solid basis for replication and future extension:https://github.com/contactless-healthcare/Deep-Learning-for-Lung-Sound-Analysis.展开更多
AIM:To explore the more accurate lung sounds auscultation technology in high battlefield noise environment.METHODS: In this study, we restrain high background noise using a new method-adaptive noise canceling based on...AIM:To explore the more accurate lung sounds auscultation technology in high battlefield noise environment.METHODS: In this study, we restrain high background noise using a new method-adaptive noise canceling based on independent component analysis (ANC-ICA), the method, by incorporating both second-order and higher-order statistics can remove noise components of the primary input signal based on statistical independence.RESULTS:The algorithm retained the local feature of lung sounds while eliminating high background noise, and performed more effectively than the conventional LMS algorithm.CONCLUSION:This method can cancel high battlefield noise of lung sounds effectively thus can help diagnose lung disease more accurately.展开更多
In this paper, a wavelet packet feature selection method for lung sounds based on optimization is proposed to obtain the best feature set which maximizes the differences between normal lung sounds and abnormal lung so...In this paper, a wavelet packet feature selection method for lung sounds based on optimization is proposed to obtain the best feature set which maximizes the differences between normal lung sounds and abnormal lung sounds(sounds with wheezes or rales). The proposed method includes two main steps: Firstly, the wavelet packet transform(WPT) is used to extract the original features of lung sounds; then the genetic algorithm(GA) is used to select the best feature set. The obtained optimal feature set is sent to four different classifiers to evaluate the performance of the proposed method. Experimental results show that the feature set obtained by the proposed method provides a higher classification accuracy of 94.6% in comparison with the best wavelet packet basis approach and multi-scale principal component analysis(PCA) approach. Meanwhile, the proposed method has effective generalization performance and can obtain the best feature set without priori knowledge of lung sounds.展开更多
Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new ...Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new method of LS filtering which separates HS and NI simultaneously. It focuses on the application of least mean squares (LMS) algorithm with adaptive noise cancelling (ANC) technique. The second step of the new method is to modulate the reference input r1(n) of LMS-ANC to acquiesce combining HS and NI signals. The obtained signal is removed from primary signal (original lung sound recording-LS). The original signal is recorded from subjects and derived HS from it and it is modified by a band pass filter. NI is simulated by generating approximately periodic white gaussian noise (WGN) signal. The LMS-ANC designed algorithm is controlled in order to determine the optimum values of the order L and the coefficient convergence μ. The output results are measured using power special density (PSD), which has shown the effectiveness of our suggested method. The result also has shown visual difference PSD (to) normal and abnormal LS recording. The results show that the method is a good technique for heart sound and noise reduction from lung sounds recordings simultaneously with saving LS characteristics.展开更多
Background Although acute congestive heart failure (CHF) patients typically present with abnormal auscultatory findings on lung examination, lung sounds are not normally subjected to rigorous analysis. The goals of ...Background Although acute congestive heart failure (CHF) patients typically present with abnormal auscultatory findings on lung examination, lung sounds are not normally subjected to rigorous analysis. The goals of this study were to use a computerized analytic acoustic tool to evaluate lung sound patterns in CHF patients during acute exacerbation and after clinical improvement and to compare CHF profiles with those of normal individuals.Methods Lung sounds throughout the respiratory cycle was captured using a computerized acoustic-based imaging technique. Thirty-two consecutive CHF patients were imaged at the time of presentation to the emergency department and after clinical improvement. Digital images were created, geographical area of the images and lung sound patterns were quantitatively analyzed.Results The geographical areas of the vibration energy image of acute CHF patients without and with radiographically evident pulmonary edema were (67.9±4.7) and (60.3±3.5) kilo-pixels, respectively (P 〈0.05). In CHF patients without and with radiographically evident pulmonary edema (REPE), after clinical improvement the geographical area of vibration energy image of lung sound increased to (74.5±4.4) and (73.9±3.9) kilo-pixels (P 〈0.05), respectively. Vibration energy decreased in CHF patients with REPE following clinical improvement by an average of (85±19)% (P 〈0.01). Conclusions With clinical improvement of acute CHF exacerbations, there was more homogenous distribution of lung vibration energy, as demonstrated by the increased geographical area of the vibration energy image. Lung sound analysis may be useful to track in acute CHF exacerbations.展开更多
Noise artifacts are one of the key obstacles in applying continuous monitoring and computer-assisted analysis of lung sounds. Traditional adaptive noise cancellation (ANC) methodologies work reasonably well when signa...Noise artifacts are one of the key obstacles in applying continuous monitoring and computer-assisted analysis of lung sounds. Traditional adaptive noise cancellation (ANC) methodologies work reasonably well when signal and noise are stationary and independent. Clinical lung sound auscultation encounters an acoustic environment in which breath sounds are not stationary and often correlate with noise. Consequendy, capability of ANC becomes significantly compromised. This paper introduces a new methodology for extracting authentic lung sounds from noise-corrupted measurements. Unlike traditional noise cancellation methods that rely on either frequency band separation or signal/noise independence to achieve noise reduction, this methodology combines the traditional noise canceling methods with the unique feature of time-split stages in breathing sounds. By employing a multi-sensor system, the method first employs a high-pass filter to eliminate the off-band noise, and then performs time-shared blind identification and noise cancellation with recursion from breathing cycle to cycle. Since no frequency separation or signal/noise independence is required, this method potentially has a robust and reliable capability of noise reduction, complementing the traditional methods.展开更多
基金This work is supported by the National Key Research and Development Program of China(2022YFC2407800)the General Program of National Natural Science Foundation of China(62271241)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2023A1515012983)the Shenzhen Fundamental Research Program(JCYJ20220530112601003).
文摘Auscultation is crucial for the diagnosis of respiratory system diseases.However,traditional stethoscopes have inherent limitations,such as inter-listener variability and subjectivity,and they cannot record respiratory sounds for offline/retrospective diagnosis or remote prescriptions in telemedicine.The emergence of digital stethoscopes has overcome these limitations by allowing physicians to store and share respiratory sounds for consultation and education.On this basis,machine learning,particularly deep learning,enables the fully-automatic analysis of lung sounds that may pave the way for intelligent stethoscopes.This review thus aims to provide a comprehensive overview of deep learning algorithms used for lung sound analysis to emphasize the significance of artificial intelligence(AI)in this field.We focus on each component of deep learning-based lung sound analysis systems,including the task categories,public datasets,denoising methods,and,most importantly,existing deep learning methods,i.e.,the state-of-the-art approaches to convert lung sounds into two-dimensional(2D)spectrograms and use convolutional neural networks for the end-to-end recognition of respiratory diseases or abnormal lung sounds.Additionally,this review highlights current challenges in this field,including the variety of devices,noise sensitivity,and poor interpretability of deep models.To address the poor reproducibility and variety of deep learning in this field,this review also provides a scalable and flexible open-source framework that aims to standardize the algorithmic workflow and provide a solid basis for replication and future extension:https://github.com/contactless-healthcare/Deep-Learning-for-Lung-Sound-Analysis.
基金Supported by Obligatory Budget of Chine PLA in the "tenth-five years"(OIL077)
文摘AIM:To explore the more accurate lung sounds auscultation technology in high battlefield noise environment.METHODS: In this study, we restrain high background noise using a new method-adaptive noise canceling based on independent component analysis (ANC-ICA), the method, by incorporating both second-order and higher-order statistics can remove noise components of the primary input signal based on statistical independence.RESULTS:The algorithm retained the local feature of lung sounds while eliminating high background noise, and performed more effectively than the conventional LMS algorithm.CONCLUSION:This method can cancel high battlefield noise of lung sounds effectively thus can help diagnose lung disease more accurately.
基金Funded by the International Science and Technology Cooperation Foundation of Chongqing Science and Technology Commission(Grant No.cstc2012gg-gjhz0023)the 2013 Innovative Team Construction Project of Chongqing Universities
文摘In this paper, a wavelet packet feature selection method for lung sounds based on optimization is proposed to obtain the best feature set which maximizes the differences between normal lung sounds and abnormal lung sounds(sounds with wheezes or rales). The proposed method includes two main steps: Firstly, the wavelet packet transform(WPT) is used to extract the original features of lung sounds; then the genetic algorithm(GA) is used to select the best feature set. The obtained optimal feature set is sent to four different classifiers to evaluate the performance of the proposed method. Experimental results show that the feature set obtained by the proposed method provides a higher classification accuracy of 94.6% in comparison with the best wavelet packet basis approach and multi-scale principal component analysis(PCA) approach. Meanwhile, the proposed method has effective generalization performance and can obtain the best feature set without priori knowledge of lung sounds.
文摘Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new method of LS filtering which separates HS and NI simultaneously. It focuses on the application of least mean squares (LMS) algorithm with adaptive noise cancelling (ANC) technique. The second step of the new method is to modulate the reference input r1(n) of LMS-ANC to acquiesce combining HS and NI signals. The obtained signal is removed from primary signal (original lung sound recording-LS). The original signal is recorded from subjects and derived HS from it and it is modified by a band pass filter. NI is simulated by generating approximately periodic white gaussian noise (WGN) signal. The LMS-ANC designed algorithm is controlled in order to determine the optimum values of the order L and the coefficient convergence μ. The output results are measured using power special density (PSD), which has shown the effectiveness of our suggested method. The result also has shown visual difference PSD (to) normal and abnormal LS recording. The results show that the method is a good technique for heart sound and noise reduction from lung sounds recordings simultaneously with saving LS characteristics.
文摘Background Although acute congestive heart failure (CHF) patients typically present with abnormal auscultatory findings on lung examination, lung sounds are not normally subjected to rigorous analysis. The goals of this study were to use a computerized analytic acoustic tool to evaluate lung sound patterns in CHF patients during acute exacerbation and after clinical improvement and to compare CHF profiles with those of normal individuals.Methods Lung sounds throughout the respiratory cycle was captured using a computerized acoustic-based imaging technique. Thirty-two consecutive CHF patients were imaged at the time of presentation to the emergency department and after clinical improvement. Digital images were created, geographical area of the images and lung sound patterns were quantitatively analyzed.Results The geographical areas of the vibration energy image of acute CHF patients without and with radiographically evident pulmonary edema were (67.9±4.7) and (60.3±3.5) kilo-pixels, respectively (P 〈0.05). In CHF patients without and with radiographically evident pulmonary edema (REPE), after clinical improvement the geographical area of vibration energy image of lung sound increased to (74.5±4.4) and (73.9±3.9) kilo-pixels (P 〈0.05), respectively. Vibration energy decreased in CHF patients with REPE following clinical improvement by an average of (85±19)% (P 〈0.01). Conclusions With clinical improvement of acute CHF exacerbations, there was more homogenous distribution of lung vibration energy, as demonstrated by the increased geographical area of the vibration energy image. Lung sound analysis may be useful to track in acute CHF exacerbations.
基金Hong Wang's research was supported in part by the Anesthesiology Department at Wayne State University and in part by Wayne State University Research Enhancement ProgramLeyi Wang" s research was supported in part by the National Science Foundation ( No.
文摘Noise artifacts are one of the key obstacles in applying continuous monitoring and computer-assisted analysis of lung sounds. Traditional adaptive noise cancellation (ANC) methodologies work reasonably well when signal and noise are stationary and independent. Clinical lung sound auscultation encounters an acoustic environment in which breath sounds are not stationary and often correlate with noise. Consequendy, capability of ANC becomes significantly compromised. This paper introduces a new methodology for extracting authentic lung sounds from noise-corrupted measurements. Unlike traditional noise cancellation methods that rely on either frequency band separation or signal/noise independence to achieve noise reduction, this methodology combines the traditional noise canceling methods with the unique feature of time-split stages in breathing sounds. By employing a multi-sensor system, the method first employs a high-pass filter to eliminate the off-band noise, and then performs time-shared blind identification and noise cancellation with recursion from breathing cycle to cycle. Since no frequency separation or signal/noise independence is required, this method potentially has a robust and reliable capability of noise reduction, complementing the traditional methods.