This paper deals with robust direct power control of a grid-connected bmshless doubly-fed induction generator(BDFIG). Using a nonlinear feedback lineariza- tion strategy, an attempt is made to improve the desired pe...This paper deals with robust direct power control of a grid-connected bmshless doubly-fed induction generator(BDFIG). Using a nonlinear feedback lineariza- tion strategy, an attempt is made to improve the desired performances by controlling the generated stator active and reactive power in a linear and decoupled manner. There- fore, to achieve this objective, the Lyapunov approach is used associated with a sliding mode control to guarantee the global asymptotical stability. Thus, an optimal operation of the BDFIG in sub-synchronous operation is obtained as well as the stator power flows with the possibility of keeping stator power factor at a unity. The proposed method is tested with the Matlab/Simulink software. Simulation results illustrate the performances and the feasibility of the designed control.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical po...A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical points,stability,Lyapunov exponents,time phase portraits,and circuit implementation.Also,anti-synchronization phenomena were implemented on the new system.Firstly,the error dynamics is found.Then,four different controllers are adopted to stabilize this error relying on the nonlinear control technique with two main ways:linearization and Lyapunov stability theory.In comparison with previous works,the present controllers realize anti-synchronization based on another method/linearization method.Finally,a comparison between the two ways was made.The simulation results show the effectiveness and accuracy of the first analytical strategy.展开更多
An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control...An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.展开更多
This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-fo...This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design.展开更多
The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are...The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are synchronized with a guaranteed H∞ performance. Based on the Lyapunov stability theory, a delay-dependent condition is derived and formulated in the form of linear matrix inequality (LMI). A numerical simulation is also presented to validate the effectiveness of the developed theoretical results.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time...Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method.展开更多
In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality ...In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.展开更多
In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based contr...In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
As most real world systems are significantly nonlinear in nature,developing robust controllers have attracted many researchers for decades.Robust controllers are the controllers that are able to cope with the inherent...As most real world systems are significantly nonlinear in nature,developing robust controllers have attracted many researchers for decades.Robust controllers are the controllers that are able to cope with the inherent uncertainties of the nonlinear systems.Many control methods have been developed for this purpose.Sliding mode control(SMC)is one of the most commonly used methods in developing robust controllers.This paper presents a higher order SMC(HOSMC)approach to mitigate the chattering problem of the traditional SMC techniques.The developed approach combines a third order SMC with an adaptive PID(proportional,integral,derivative)sliding surface to overcome the drawbacks of using PID controller alone.Moreover,the presented approach is capable of adaptively tuning the controller parameters online to best fit the real time applications.The Lyapunov theory is used to validate the stability of the presented approach and its feasibility is tested through a comparison with other conventional SMC approaches.展开更多
This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a no...This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.展开更多
This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical n...This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.展开更多
Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in t...Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
This paper further investigates the synchronization problem of a new chaotic system with known or unknown system parameters. Based on the Lyapunov stability theory,a novel adaptive control law is derived for the synch...This paper further investigates the synchronization problem of a new chaotic system with known or unknown system parameters. Based on the Lyapunov stability theory,a novel adaptive control law is derived for the synchronization of a new chaotic system with known or unknown system parameters.Theoretical analysis and numerical simulations showthe effectiveness and feasibility of the proposed schemes.展开更多
Based on the Lorenz chaotic system, this paper constructs a new four-dimensional hyperchaotic Lorenz system, and studies the basic dynamic behaviours of the system. The Routh-Hurwitz theorem is applied to derive the s...Based on the Lorenz chaotic system, this paper constructs a new four-dimensional hyperchaotic Lorenz system, and studies the basic dynamic behaviours of the system. The Routh-Hurwitz theorem is applied to derive the stability conditions of the proposed system. Furthermore, based on Lyapunov stability theory, an adaptive controller is designed and the new four-dimensional hyperchaotic Lorenz system is controlled at equilibrium point. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory...The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.展开更多
This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density fun...This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density function is realized by a set of B-spline functions. This generally produces a nonlinear state space model for the weights of the B-spline approximation. A linearized model is therefore obtained and embedded into a performance function that measures the tracking error of the output probability density function with respect to a given distribution. By using this performance function as a Lyapunov function for the closed loop system, a feedback control input has been obtained which guarantees closed loop stability and realizes perfect tracking. The algorithm described in this paper has been tested on a simulated example and desired results have been achieved.展开更多
The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle(AUV).The divergence of control,which the unstable system may be brought about,is fat...The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle(AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov's direct method is proposed in this paper.After decoupling the six degree-of-freedom(DOF)motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.展开更多
In this paper, we consider the chaos control for 4D hyperchaotic system by two cases, known & unknown parameters based on Lyapunov stability theory via nonlinear control. We find that there are two cofactors that ...In this paper, we consider the chaos control for 4D hyperchaotic system by two cases, known & unknown parameters based on Lyapunov stability theory via nonlinear control. We find that there are two cofactors that have an effect on determining any case to achieve the control, the two cofactors are proposed in the control and the matrix that produce from the time derivative of Lyapunov function. In adding, we find some weakness cases in Lyapunov stability theory. For this reason, we design with only one controller and perform a simple change in this control in order to recognize the difference between these cases although all of the controllers are almost similar.展开更多
文摘This paper deals with robust direct power control of a grid-connected bmshless doubly-fed induction generator(BDFIG). Using a nonlinear feedback lineariza- tion strategy, an attempt is made to improve the desired performances by controlling the generated stator active and reactive power in a linear and decoupled manner. There- fore, to achieve this objective, the Lyapunov approach is used associated with a sliding mode control to guarantee the global asymptotical stability. Thus, an optimal operation of the BDFIG in sub-synchronous operation is obtained as well as the stator power flows with the possibility of keeping stator power factor at a unity. The proposed method is tested with the Matlab/Simulink software. Simulation results illustrate the performances and the feasibility of the designed control.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
文摘A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical points,stability,Lyapunov exponents,time phase portraits,and circuit implementation.Also,anti-synchronization phenomena were implemented on the new system.Firstly,the error dynamics is found.Then,four different controllers are adopted to stabilize this error relying on the nonlinear control technique with two main ways:linearization and Lyapunov stability theory.In comparison with previous works,the present controllers realize anti-synchronization based on another method/linearization method.Finally,a comparison between the two ways was made.The simulation results show the effectiveness and accuracy of the first analytical strategy.
基金Project(70473068) supported by the National Natural Science Foundation of ChinaProject(05JZD00024) supported by the Major Subject of Ministry of Education, China
文摘An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.
基金supported by the National Natural Science Foundation of China(61304026)
文摘This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design.
基金supported by National Natural Science Foundation of China (No.60674092)
文摘The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are synchronized with a guaranteed H∞ performance. Based on the Lyapunov stability theory, a delay-dependent condition is derived and formulated in the form of linear matrix inequality (LMI). A numerical simulation is also presented to validate the effectiveness of the developed theoretical results.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
基金supported by the National Natural Science Foundation of China(61374003 41631072)the Academic Foundation of Naval University of Engineering(20161475)
文摘Both time-delays and anti-windup(AW)problems are conventional problems in system design,which are scarcely discussed in cellular neural networks(CNNs).This paper discusses stabilization for a class of distributed time-delayed CNNs with input saturation.Based on the Lyapunov theory and the Schur complement principle,a bilinear matrix inequality(BMI)criterion is designed to stabilize the system with input saturation.By matrix congruent transformation,the BMI control criterion can be changed into linear matrix inequality(LMI)criterion,then it can be easily solved by the computer.It is a one-step AW strategy that the feedback compensator and the AW compensator can be determined simultaneously.The attraction domain and its optimization are also discussed.The structure of CNNs with both constant timedelays and distribute time-delays is more general.This method is simple and systematic,allowing dealing with a large class of such systems whose excitation satisfies the Lipschitz condition.The simulation results verify the effectiveness and feasibility of the proposed method.
文摘In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.
文摘In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
基金This work is funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the project number(IF-PSAU-2021/01/17796).
文摘As most real world systems are significantly nonlinear in nature,developing robust controllers have attracted many researchers for decades.Robust controllers are the controllers that are able to cope with the inherent uncertainties of the nonlinear systems.Many control methods have been developed for this purpose.Sliding mode control(SMC)is one of the most commonly used methods in developing robust controllers.This paper presents a higher order SMC(HOSMC)approach to mitigate the chattering problem of the traditional SMC techniques.The developed approach combines a third order SMC with an adaptive PID(proportional,integral,derivative)sliding surface to overcome the drawbacks of using PID controller alone.Moreover,the presented approach is capable of adaptively tuning the controller parameters online to best fit the real time applications.The Lyapunov theory is used to validate the stability of the presented approach and its feasibility is tested through a comparison with other conventional SMC approaches.
文摘This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.
基金Project supported by the Natural Science Foundation of Liaoning Province,China(Grant No.20082147)the Innovative Team Program of Liaoning Educational Committee,China(Grant No.2008T108)
文摘This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network.
文摘Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
文摘This paper further investigates the synchronization problem of a new chaotic system with known or unknown system parameters. Based on the Lyapunov stability theory,a novel adaptive control law is derived for the synchronization of a new chaotic system with known or unknown system parameters.Theoretical analysis and numerical simulations showthe effectiveness and feasibility of the proposed schemes.
文摘Based on the Lorenz chaotic system, this paper constructs a new four-dimensional hyperchaotic Lorenz system, and studies the basic dynamic behaviours of the system. The Routh-Hurwitz theorem is applied to derive the stability conditions of the proposed system. Furthermore, based on Lyapunov stability theory, an adaptive controller is designed and the new four-dimensional hyperchaotic Lorenz system is controlled at equilibrium point. Numerical simulation results are presented to illustrate the effectiveness of this method.
文摘The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.
文摘This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density function is realized by a set of B-spline functions. This generally produces a nonlinear state space model for the weights of the B-spline approximation. A linearized model is therefore obtained and embedded into a performance function that measures the tracking error of the output probability density function with respect to a given distribution. By using this performance function as a Lyapunov function for the closed loop system, a feedback control input has been obtained which guarantees closed loop stability and realizes perfect tracking. The algorithm described in this paper has been tested on a simulated example and desired results have been achieved.
基金supported by the National High Technology Development Program of China(863Program,Grant No.2008AA092301)the Fundamental Research Foundation of Harbin Engineering University(Grant No.HEUFT08001)the Postdoctoral Science Foundation of China(Grant No.20080440838)
文摘The stability of the motion control system is one of the decisive factors of the control quality for Autonomous Underwater Vehicle(AUV).The divergence of control,which the unstable system may be brought about,is fatal to the operation of AUV.The stability analysis of the PD and S-surface speed controllers based on the Lyapunov's direct method is proposed in this paper.After decoupling the six degree-of-freedom(DOF)motions of the AUV,the axial dynamic behavior is discussed and the condition is deduced,in which the parameters selection within stability domain can guarantee the system asymptotically stable.The experimental results in a tank and on the sea have successfully verified the algorithm reliability,which can be served as a good reference for analyzing other AUV nonlinear control systems.
文摘In this paper, we consider the chaos control for 4D hyperchaotic system by two cases, known & unknown parameters based on Lyapunov stability theory via nonlinear control. We find that there are two cofactors that have an effect on determining any case to achieve the control, the two cofactors are proposed in the control and the matrix that produce from the time derivative of Lyapunov function. In adding, we find some weakness cases in Lyapunov stability theory. For this reason, we design with only one controller and perform a simple change in this control in order to recognize the difference between these cases although all of the controllers are almost similar.