期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
Roles of neuronal lysosomes in the etiology of Parkinson’s disease 被引量:1
1
作者 Mattia Volta 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1981-1983,共3页
Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fun... Therapeutic progress in neurodegenerative conditions such as Parkinson’s disease has been hampered by a lack of detailed knowledge of its molecular etiology.The advancements in genetics and genomics have provided fundamental insights into specific protein players and the cellular processes involved in the onset of disease.In this respect,the autophagy-lysosome system has emerged in recent years as a strong point of convergence for genetics,genomics,and pathologic indications,spanning both familial and idiopathic Parkinson’s disease.Most,if not all,genes linked to familial disease are involved,in a regulatory capacity,in lysosome function(e.g.,LRRK2,alpha-synuclein,VPS35,Parkin,and PINK1).Moreover,the majority of genomic loci associated with increased risk of idiopathic Parkinson’s cluster in lysosome biology and regulation(GBA as the prime example).Lastly,neuropathologic evidence showed alterations in lysosome markers in autoptic material that,coupled to the alpha-synuclein proteinopathy that defines the disease,strongly indicate an alteration in functionality.In this Brief Review article,I present a personal perspective on the molecular and cellular involvement of lysosome biology in Parkinson’s pathogenesis,aiming at a larger vision on the events underlying the onset of the disease.The attempts at targeting autophagy for therapeutic purposes in Parkinson’s have been mostly aimed at“indiscriminately”enhancing its activity to promote the degradation and elimination of aggregate protein accumulations,such as alpha-synuclein Lewy bodies.However,this approach is based on the assumption that protein pathology is the root cause of disease,while pre-pathology and pre-degeneration dysfunctions have been largely observed in clinical and pre-clinical settings.In addition,it has been reported that unspecific boosting of autophagy can be detrimental.Thus,it is important to understand the mechanisms of specific autophagy forms and,even more,the adjustment of specific lysosome functionalities.Indeed,lysosomes exert fine signaling capacities in addition to their catabolic roles and might participate in the regulation of neuronal and glial cell functions.Here,I discuss hypotheses on these possible mechanisms,their links with etiologic and risk factors for Parkinson’s disease,and how they could be targeted for disease-modifying purposes. 展开更多
关键词 ALPHA-SYNUCLEIN autophagy LRRK2 lysosome neuroprotection NEUROTRANSMISSION Parkinson’s disease Rit2 SYNAPSE
下载PDF
Role of lysosomal trafficking regulator in autophagic lysosome reformation in neurons:a disease perspective
2
作者 Prashant Sharma Jenny Serra-Vinardell +1 位作者 Wendy J.Introne May Christine V.Malicdan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期957-958,共2页
Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous ... Lysosomes are discrete organelles that act as recycling centers for extracellular and intracellular materials,playing a pivotal role in maintaining cellular homeostasis.Their acidic environment,maintained by numerous hydrolytic enzymes,facilitates substrate degradation.Dysfunction in lysosomal processes can lead to abnormal substrate degradation,significantly impacting cellular homeostasis.High energy-demanding cells,such as post-mitotic neurons,are especially vulnerable to these changes,often resulting in neurological diseases.Autophagy,a conserved catabolic process,requires extensive lysosomal utilization.It plays a key role in removing unnecessary intracellular components,ensuring cellular homeostasis,and promoting cell survival during stress conditions such as starvation,infection,or cellular damage. 展开更多
关键词 HOMEOSTASIS LYSOSOMAL removing
下载PDF
Enhancement of lysosome biogenesis as a potential therapeutic approach for neurodegenerative diseases 被引量:1
3
作者 Wenlong Xue Jie Zhang Yang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2370-2376,共7页
Millions of people are suffering from Alzheimer’s disease globally,but there is still no effective treatment for this neurodegenerative disease.Thus,novel therapeutic approaches for Alzheimer’s disease are needed,wh... Millions of people are suffering from Alzheimer’s disease globally,but there is still no effective treatment for this neurodegenerative disease.Thus,novel therapeutic approaches for Alzheimer’s disease are needed,which requires further evaluation of the regulato ry mechanisms of protein aggregate degradation.Lysosomes are crucial degradative organelles that maintain cellular homeostasis.Transcription factor EB-mediated lysosome biogenesis enhances autolysosomedependent degradation,which subsequently alleviates neurodege nerative diseases,including Alzheimer’s disease,Parkinson’s disease,and Huntington’s disease.In this review,we start by describing the key features of lysosomes,including their roles in nutrient sensing and degradation,and their functional impairments in different neurodegenerative diseases.We also explain the mechanisms—especially the post-translational modifications—which impact transcription factor EB and regulate lysosome biogenesis.Next,we discuss strategies for promoting the degradation of toxic protein aggregates.We describe Proteolysis-Ta rgeting Chimera and related technologies for the targeted degradation of specific proteins.We also introduce a group of LYsosome-Enhancing Compounds,which promote transcription factor EB-mediated lysosome biogenesis and improve learning,memory,and cognitive function in APP-PSEN1 mice.In summary,this review highlights the key aspects of lysosome biology,the mechanisms of transcription factor EB activation and lysosome biogenesis,and the promising strategies which are emerging to alleviate the pathogenesis of neurodegenerative diseases. 展开更多
关键词 Alzheimer’s disease degradation lysosome biogenesis lysosome-Enhancing Compounds neurodegenerative diseases post-translational modifications protein aggregates transcription factor EB
下载PDF
KCNJ15 deficiency promotes drug resistance via affecting the function of lysosomes 被引量:1
4
作者 Xinbo Qiao Yixiao Zhang +10 位作者 Zhan Zhang Nan Niu Haonan Li Lisha Sun Qingtian Ma Jiawen Bu Jinchi Liu Guanglei Chen Jinqi Xue Yongliang Yang Caigang Liu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期132-145,共14页
The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients.V-ATPase,an ATP-driven proton pump positioned at lysosomal surfaces,is responsible fo... The altered lysosomal function can induce drug redistribution which leads to drug resistance and poor prognosis for cancer patients.V-ATPase,an ATP-driven proton pump positioned at lysosomal surfaces,is responsible for maintaining the stability of lysosome.Herein,we reported that the potassium voltage-gated channel subfamily J member 15(KCNJ15)protein,which may bind to V-ATPase,can regulate the function of lysosome.The deficiency of KCNJ15 protein in breast cancer cells led to drug aggregation as well as reduction of drug efficacy.The application of the V-ATPase inhibitor could inhibit the binding between KCNJ15 and V-ATPase,contributing to the amelioration of drug resistance.Clinical data analysis revealed that KCNJ15 deficiency was associated with higher histological grading,advanced stages,more metastases of lymph nodes,and shorter disease free survival of patients with breast cancer.KCNJ15 expression level is positively correlated with a high response rate after receiving neoadjuvant chemotherapy.Moreover,we revealed that the small molecule drug CMA/BAF can reverse drug resistance by disrupting the interaction between KCNJ15 and lysosomes.In conclusion,KCNJ15 could be identified as an underlying indicator for drug resistance and survival of breast cancer,which might guide the choice of therapeutic strategies. 展开更多
关键词 Breast cancer Cancer progression Drug resistance lysosome KCNJ15
下载PDF
SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes 被引量:2
5
作者 Min-Zhe Li Liang-Jun Zheng +5 位作者 Jian Shen Xin-Ya Li Qi Zhang Xue Bai Qing-Song Wang Jian-Guo li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期2005-2013,共9页
Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ... Previous studies have shown that sirtuin 1(SIRT1) reduces the production of neuronal amyloid beta(Aβ) and inhibits the inflammatory response of glial cells, thereby generating a neuroprotective effect against Aβ neurotoxicity in animal models of Alzheimer's disease. However, the protective effect of SIRT1 on astrocytes is still under investigation. This study established a time point model for the clearance of Aβ in primary astrocytes. Results showed that 12 hours of culture was sufficient for endocytosis of oligomeric Aβ, and 36 hours sufficient for effective degradation. Immunofluorescence demonstrated that Aβ degradation in primary astrocytes relies on lysosome function. Enzymatic agonists or SIRT1 inhibitors were used to stimulate cells over a concentration gradient. Aβ was co-cultured for 36 hours in medium. Western blot assay results under different conditions revealed that SIRT1 relies on its deacetylase activity to promote intracellular Aβ degradation. The experiment further screened SIRT1 using quantitative proteomics to investigate downstream, differentially expressed proteins in the Aβ degradation pathway and selected the ones related to enzyme activity of SIRT1. Most of the differentially expressed proteins detected are close to the primary astrocyte lysosomal pathway. Immunofluorescence staining demonstrated that SIRT1 relies on its deacetylase activity to upregulate lysosome number in primary astrocytes. Taken together, these findings confirm that SIRT1 relies on its deacetylase activity to upregulate lysosome number, thereby facilitating oligomeric Aβ degradation in primary astrocytes. 展开更多
关键词 nerve regeneration amyloid beta peptide Alzheimer's disease NEURODEGENERATION ASTROCYTES gliocytes sirtuin 1 quantitative proteomics lysosome time point model peptide degradation neural regeneration
下载PDF
Association of Lysosome Associated Protein Transmembrane 4 Beta Gene Polymorphism with the Risk of Pancreatic Cancer 被引量:1
6
作者 Shan Wang Qing-Yun Zhang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2010年第4期291-295,共5页
Objective: Lysosome associated protein transmembrane 4 beta (LAPTM4B) was originally identified as a gene in human hepatocellular carcinoma (HCC). It was successfully cloned by fluorescence differential display, ... Objective: Lysosome associated protein transmembrane 4 beta (LAPTM4B) was originally identified as a gene in human hepatocellular carcinoma (HCC). It was successfully cloned by fluorescence differential display, rapid amplification of cDNA ends (RACE) and reverse transcription polymerase chain reaction (RT-PCR). Previous study showed that the novel gene played an important role in the occurrence, development, migration and prognosis of tumors. Pancreatic cancer is an aggressive malignancy with the majority of patients dying within one year after diagnosis. This study tries to find out the relationship between lysosome associated protein transmembrane 4 beta gene polymorphism and the susceptibility of pancreatic cancer. Methods: A case-control study was conducted in China, including 58 pancreatic cancer cases and 156 healthy controls. Human genomic DNA was used as the template, polymerase chain reaction (PCR) was used to detect the distribution of LAPTM4B genotype. Analyses Odds ratio (OR) and corresponding 95% confidence interval (95%CI) with logistic regression were performed. Results: Two alleles of LAPTM4B generated three kinds of genotypes in population, *1/1, *1/2, and *2/2. The genotype frequency of *1/1, *1/2 and *2/2 in the pancreatic cancer group were 41.4%, 44.8% and 13.8% respectively, which were not significantly different from those of healthy group (47.4%, 42.9%, 9.6%) (P=0.773, P=0.291). Also the *2 allele frequency of LAPTM4B among pancreatic cancer had no significantly difference with the controls (P=0.354). When compared to the *1 allele, the people with *2 allele had no increased risk of pancreatic cancer. Conclusion: The gene polymorphism of LAPTM4B may not influence the susceptibility of pancreatic cancer. 展开更多
关键词 POLYMORPHISM lysosome associated protein transmembrane 4 beta Pancreatic cancer Susceptibility
下载PDF
Combination of kaempferol and chloroquine induces glioma cell death via expansion and subsequent rupture of lysosomes
7
作者 InYoungKIM MiJinYOON +2 位作者 MinJunSHIM JunHeeLIM KyeongSookCHOI 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2015年第S1期87-88,共2页
OBJECTIVE Chloroquine is considered as a potential chemotherapy and radiotherapy sensitizer,but the anticancer effect of chloroquine alone is limited.Since we found that the flavonoid kaempferol effectively sensitizes... OBJECTIVE Chloroquine is considered as a potential chemotherapy and radiotherapy sensitizer,but the anticancer effect of chloroquine alone is limited.Since we found that the flavonoid kaempferol effectively sensitizes glioma cells to chloroquine-mediated cell death,we investigated the underlying mechanisms of glioma cell death induced by the combination of kaempferol and chloroquine.METHODS To examine the effect of kaempferol and/or chloroquine on various glioma cells,cell viability assay using calcein-AM and EthD-1was performed.The changes in the lysosomal structures following treatment with kaempferol and/or chloroquine were observed by electron microscopy and fluorescence microscopy using acridine orange or Lyso-tracker Red.The changes in cathepsin D proteins were analyzed by Western blotting,immunocytochemistry,and fluorescence microscopy using BODIPY FL-pepstatin.RESULTS Treatment with subtoxic doses of chloroquine,when combined with kaempferol,effectively induced cell death in various glioma cells,but not in normal astrocytes.While kaempferol treatment increased the numbers of lysosome,chloroquine treatment increased lysosomal masses.Combined treatment with kaempferol and chloroquine induced the expansion and subsequent rupture of lysosomes,leading to the spillage of the lysosomal contents into the cytosol.We found that while kaemfperol treatment increased the active mature forms of cathepsin D,chloroquine treatment completely blocked the processing of cathepsin D.The processing of cathepsin D was also blocked by the combined treatment,but the activity of cathepsin D,which was released from the lysosomes,was restored.The cell death induced by kaempferol and chloroquine in U251 MG cells was accompanied by mitochondrial dysfunction,ER stress,and DNA damage.CONCLUSION Disruption of lysosomal membrane integrity and a resultant release of lysosomal proteases may critically contribute to the irreparable damage of various organelles and glioma cell death by chloroquine plus kaempferol. 展开更多
关键词 KAEMPFEROL CHLOROQUINE lysosomeS LYSOSOMAL membran
下载PDF
Detection of distribution of copper inside and outside of lysosomes in cultured hepatolenticular degeneration fibroblasts by electron probe X-ray microanalysis
8
作者 Wen Liu Jin-Yan Li +1 位作者 Ji Jin Ji Zuo the Department of Medical Genetics, Scholl of Medicine, Fudan University, Shanghai 200032, China Department of Biology, Zhenjiang Medical College, Zhenjiang 212000, China 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2003年第2期586-589,共4页
OBJECTIVE: To observe the distribution of copper in the subcellular structure for the understanding of primary pathogenesis of hepatolenticular degeneration (HLD). METHODS: Skin fibroblasts taken from HLD patients wer... OBJECTIVE: To observe the distribution of copper in the subcellular structure for the understanding of primary pathogenesis of hepatolenticular degeneration (HLD). METHODS: Skin fibroblasts taken from HLD patients were cultured as an in vitro model of HLD, and the control cells taken from healthy volunteers were clutured in the same way. The distribution of copper inside and outside of lysosomes in fibroblasts was detected by quantitative electron probe X-ray microanalysis. The relationship between the subcellular location of copper and the genotype of the patients, and relationship between the distribution of copper and the course of the disease were analyzed. RESULTS: The content of Cu^(2+) inside lysosomes of HLD cells (14.6±2.1 mmol/kg) and of heterozygote cells (11.6±0.6 mmol/kg) was higher than that of normal cells (4.5±1.2 mmol/kg) (P<0.01). The content of Cu^(2+) outside lysosomes of HLD cells (17.5±4.2 mmol/kg) and of heterozygote cells (12.0±0.9 mmol/kg) was higher than that of normal cells (4.7±1.2 mmol/kg) (P<0.01). The distribution of copper in the subcellular structure was correlated with disease courses of HLD patients. With the progression of the disease, more copper was deposited in lysosomes (r=0.85, P<0.01). The content of copper in the diffused cytoplasmic compartment in HLD cells was correlated with that of sulfur (r=0.86, P<0.05), but not in heterozygote and normal cells. CONCLUSIONS: In the early stage of HLD, copper is accumulated outside lysosome, which is paralleled with increase of metallothionein-like proteins (copper and sulfur-binding proteins). With the development of the disease, more copper is deposited inside lysosome than outside lysosome. We conclude that the up-regulation expression of copper and sulfur-binding proteins and copper accumulation in lysosomes may play an important role in lowering the ATP7B gene mutation-induced toxic effects of free copper on the cell. 展开更多
关键词 hepatolenticular degeneration FIBROBLAST lysosome electron probe X-ray microanalysis copper-binding protein
下载PDF
Anti-sense RNA Inhibits the Expression of Synaptotagmin Ⅱ in RBL-2H3 and Enhances the Exocytosis of Lysosomes in RBL-2H3
9
作者 张继成 吕文利 +2 位作者 李一荣 吴健民 张春光 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第2期117-120,共4页
Summary: The expression of synaptotagmin Ⅱ(Syt2) in RBL-2H3 (RBL) and its role during exocytosis of RBL was investigated. The expression of Syt2 in RBL was detected by western blot and Syt2 gene was amplified by PC... Summary: The expression of synaptotagmin Ⅱ(Syt2) in RBL-2H3 (RBL) and its role during exocytosis of RBL was investigated. The expression of Syt2 in RBL was detected by western blot and Syt2 gene was amplified by PCR. The anti-sense full length Syt2 cDNA expression vector was constructed with pEGFP-N1 and transfected into RBL by electroporation, and stable transfectants were selected by using G418. To analyze the role of Syt2 during exocytosis of RBL, the release of cathepsin D was assayed by immunoblotting. The results showed that Syt2 was expressed in RBL. The anti-sense expression vector pEGFP-N1-Syt2-AS was constructed and the sequence of insertion was completely consistent with rat Syt2 (accession number in GeneBank : NM012665). The stable transfectants (RBL-Syt2-AS) were obtained. Western blot showed that RBL-Syt2-AS expressed a lower level of Syt2 (8 % and 10 % of control cells), indicating that the expression of Syt2 in RBL-Syt2-AS was markedly down-regulated by anti-RNA. Compared with control, the release of cathepsin D by RBL-Syt2-AS was increased. It was concluded that Syt2 expressed in RBL and could inhibit exocytosis of lysosomes in RBL. 展开更多
关键词 calcium binding proteins mast cell gene expression lysosomeS EXOCYTOSIS
下载PDF
Concluding Step in Cell Restitution Cycle: ER Transport Vesicles with Sphingolipids in the Outer Leaflet of the Membrane Restore Lysosomes
10
作者 Amalia Slomiany Bronislaw L. Slomiany 《Advances in Biological Chemistry》 2014年第5期301-321,共21页
Restitution of the cell organelles and the membrane implicates serine palmitoyltransferase (SPT) in signal-specific and selective assembly of the transport vesicles. Here, we reveal that SPT, embedded in the outer lea... Restitution of the cell organelles and the membrane implicates serine palmitoyltransferase (SPT) in signal-specific and selective assembly of the transport vesicles. Here, we reveal that SPT, embedded in the outer leaflet (OL) of endoplasmic reticulum (ER), is engaged in the synthesis of ER transport vesicles that recondition cell organelles, and the inner leaflet (IL) SPT in the restitution of the cell membrane. The OL SPT impacts assembly of sphingomyelinase (SMase)—susceptible ER vesicles but not the SMase-resistant and sphingolipid (SPhL) core—carrying vesicles that refurbish the cell membrane. The investigation of the SPT-initiated differences in the placement of SPhL in vesicular membranes by utilizing ER depleted of OL SPT, allows us to conclude that the restitution of endosomal and lysosomal membranes is achieved with the involvement of OL SPT, whereas the IL SPT is involved in formation of the lipid core for glycosphingolipids (GSL) and sphingomyelin (SM) of the apical and basolateral cell membrane. These findings along with our previously published report (Slomiany and Slomiany, Advances in Biological Chemistry, 2013, 3, 275-287), provide a clear distinction between the processes that renovate cell membrane and its organelles from that of the endocytotic cell debridement, and show that vesicles are navigated to the specific organelles and the cell membrane by the biomembrane constituents programmed in ER. 展开更多
关键词 ER Transport Vesicles Specificity Serine Palmitoyltransferase SPHINGOMYELIN lysosomeS RESTITUTION CELL Debridement Autophagocytes
下载PDF
S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3 被引量:14
11
作者 Saeid Ghavami Mehdi Eshragi +7 位作者 Sudharsana R Ande Walter J Chazin Thomas Klonisch Andrew J Halayko Karol D Mcneill Mohammad Hashemi Claus Kerkhoff Marek Los 《Cell Research》 SCIE CAS CSCD 2010年第3期314-331,共18页
The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosisinducing activity in various cells of different origins. Here, we present evidence that the underlying molecular... The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosisinducing activity in various cells of different origins. Here, we present evidence that the underlying molecular mechanisms involve both programmed cell death I (PCD I, apoptosis) and PCD II (autophagy)-like death. Treatment of cells with S100A8/A9 caused the increase of Beclin-1 expression as well as Atgl2-Atg5 formation. S100A8/A9-induced cell death was partially inhibited by the specific PI3-kinase class Ⅲ inhibitor, 3-methyladenine (3-MA), and by the vacuole H+-ATPase inhibitor, bafilomycin-A1 (Baf-A1). S100A8/A9 provoked the translocation of BNIP3, a BH3 only pro-apoptotic Bcl2 family member, to mitochondria. Consistent with this finding, ATM-BNIP3 overexpression partially inhibited S100A8/A9-induced cell death, decreased reactive oxygen species (ROS) generation, and partially pro- tected against the decrease in mitochondrial transmembrane potential in S100A8/A9-treated ceils. In addition, either ATM-BNIP3 overexpression or N-acetyl-L-cysteine co-treatment decreased lysosomal activation in cells treated with S100A8/A9. Our data indicate that S100A8/A9-promoted cell death occurs through the cross-talk of mitochondria and lysosomes via ROS and the process involves BNIP3. 展开更多
关键词 S100A8/A9 CALPROTECTIN lysosomal activation mitochondrial membrane potential BNIP3 BECLIN-1
下载PDF
Enhanced lysosome escape mediated by 1,2-dicarboxylic-cyclohexene anhydride-modified poly-L-lysine dendrimer as a gene delivery system 被引量:1
12
作者 Jianmin Shen Jing Chen +5 位作者 Jingbo Ma Linlan Fan Xiaoli Zhang Ting Yue Yaping Yan Yuhang Zhang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2020年第6期759-776,共18页
Antisense oligodeoxynucleotide(ASODN)can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing,in turn,plays antitumor therapeutic roles.In the s... Antisense oligodeoxynucleotide(ASODN)can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing,in turn,plays antitumor therapeutic roles.In the study,a novel HIF-1αASODN-loaded nanocomposite was formulated to efficiently deliver gene to the target RNA.The physicochemical properties of nanocomposite were characterized using TEM,FTIR,DLS and zeta potentials.The mean diameter of resulting GEL-DGL-FA-ASODN-DCA nanocomposite was about 170–192 nm,and according to the agarose gel retardation assay,the loading amount of ASODN accounted for 166.7 mg/g.The results of cellular uptake showed that the nanocomposite could specifically target to HepG2 and Hela cells.The cytotoxicity assay demonstrated that the toxicity of vectors was greatly reduced by using DCA to reversibly block the cationic DGL.The subcellular distribution images clearly displayed the lysosomal escape ability of the DCA-modified nanocomposite.In vitro exploration of molecular mechanism indicated that the nanocomposite could inhibit m RNA expression and HIF-1αprotein translation at different levels.In vivo optical images and quantitative assay testified that the formulation accumulated preferentially in the tumor tissue.In vivo antitumor efficacy research confirmed that this nanocomposite had significant antitumor activity and the tumor inhibitory rate was 77.99%.These results manifested that the GEL-DGL-FA-ASODNDCA nanocomposite was promising in gene therapeutics for antitumor by interacting directly with target RNA. 展开更多
关键词 Antisense oligodeoxynucleotide(ASODN) Gene delivery Dendrigraft poly-L-lysines(DGL) Lysosomal escape Tumor targeting
下载PDF
Monitoring the pH fluctuation of lysosome under cell stress using a near-infrared ratiometric fluorescent probe
13
作者 Lijuan Gui Kaizhen Wang +7 位作者 Yuxin Wang Jun Yan Xian Liu Jingxuan Guo Ji Liu Dawei Deng Haiyan Chen Zhenwei Yuan 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期409-414,共6页
Cell stress responses are associated with numerous diseases including diabetes, neurodegenerative diseases, and cancer. Several events occur under cell stress, in which, are protein expression and organellespecific pH... Cell stress responses are associated with numerous diseases including diabetes, neurodegenerative diseases, and cancer. Several events occur under cell stress, in which, are protein expression and organellespecific pH fluctuation. To understand the lysosomal pH variation under cell stress, a novel NIR ratiometric pH-responsive fluorescent probe(BLT) with lysosomes localization capability was developed.The quinoline ring of BLT combined with hydrogen ion which triggered the rearrangement of π electrons conjugated at low pH medium, meanwhile, the absorption and fluorescent spectra of BLT showed a red-shifts, which gived a ratiometric signal. Moreover, the probe BLT with a suitable p Kavalue has the potential to discern changes in lysosomal pH, either induced by heat stress or oxidative stress or acetaminophen-induced(APAP) injury stress. Importantly, this ratiometric fluorescent probe innovatively tracks pH changes in lysosome in APAP-induced liver injury in live cells, mice, and zebrafish. The probe BLT as a novel fluorescent probe possesses important value for exploring lysosomal-associated physiological varieties of drug-induced hepatotoxicity. 展开更多
关键词 APAP-induced liver injury Ratiometric fluorescent probe Lysosomal pH Cell stress
原文传递
Protective effect of Liangxue Huayu decoction on human retinal pigment epithelial cell(ARPE-19)injury induced by hypoxia through autophagy pathway
14
作者 Han-Ran Zheng Yi-Tong Lin +4 位作者 Sheng Chen Zi-Yang Chen Jun-Chang Cao Zhao-Da Ye Yan-Hong Hu 《Pharmacology Discovery》 2024年第1期44-50,共7页
Background:Exploring the protective mechanism of the Liangxue Huayu(LXHY)decoction on human retinal pigment epithelial(RPE)cells induced by hypoxia through the autophagy pathway.Methods:The appropriate LXHY decoction ... Background:Exploring the protective mechanism of the Liangxue Huayu(LXHY)decoction on human retinal pigment epithelial(RPE)cells induced by hypoxia through the autophagy pathway.Methods:The appropriate LXHY decoction concentration was determined by CCK-8.ARPE-19 cells were divided into the normal control group(A group),CoCl_(2)group(B group),3-Methyladenine(3-MA)group(treated with 3-MA(the inhibition of autophagy pathway))(C group),blank serum(BS)group(D group),LXHY drug-contained serum(DCS)group(E group),and Rapamycin(RAP)group[treated with LXHY drug-contained serum combined with rapamycin group(the activation of autophagy pathway)](F group).Counting the number of autophagosomes and autolysosomes in each group of cells under transmission electron microscopy.After infection of cells in each group by mRFP-GFP-LC3 fusion protein adenovirus,the strength of autophagic flux was detected.The mRNA expression levels of LC3 and Beclin-1 were detected by Q-PCR.Results:CCK-8 assay results showed that LXHY DCS could inhibit the cell proliferation of ARPE-19 under hypoxia(all P<0.05).As the transmission electron microscopy assay result showed,compared with the normal control group,the number of autolysosomes was significantly increased in the CoCl_(2)group(P<0.05).Compared with CoCl_(2)group,the number of autolysosomes was significantly reduced the 3-Methyladenine group,blank serum group and LXHY drug-contained serum group(all P<0.001).As autophagic flux assay result showed,compared with the normal control group,the level of autophagosomes and autolysosomes were significantly risen in CoCl_(2)group(all P<0.001).Compared with the CoCl_(2)group,the level of autophagosomes and autolysosomes were significantly fell down in 3-Methyladenine group,blank serum group and LXHY drug-contained serum group(all P<0.05).The level of autolysosomes in the LXHY drug-contained serum group was lower than in the blank serum group(P<0.05).Compared with the LXHY drug-contained serum group,the levels of autophagosomes and autolysosomes were significantly risen in the LXHY drug-contained serum combined with the rapamycin group(all P<0.05).As the Q-PCR result showed,compared with the normal control group,the expression of LC3 and Beclin-1 mRNA were significantly reduced in the CoCl_(2)group(all P<0.001).Compared with the CoCl_(2)group,the expression of LC3 mRNA were significantly increased in the 3-Methyladenine group,blank serum group and LXHY drug-contained serum group(all P<0.001).Beclin-1 mRNA expression was increased significantly(all P<0.001)in the blank serum group and the LXHY drug-contained serum group.And Beclin-1 mRNA expression in the LXHY drug-contained serum group was statistically significant increased than blank serum group(P<0.001).In the LXHY drug-contained serum combined with the rapamycin group,the LC3 and Beclin-1 mRNA expression was reduced significantly compared with the LXHY drug-contained serum group(all P<0.001).Conclusion:The LXHY DCS has the ability to protect the human retinal pigment epithelial cell(ARPE-19)damage under hypoxia through the autophagy pathway. 展开更多
关键词 Liangxue Huayu decoction age-related macular degeneration AUTOPHAGY lysosome AUTOPHAGOSOMES
下载PDF
Isoform-and cell-state-specific APOE homeostasis and function 被引量:2
15
作者 Karina Lindner Anne-Claude Gavin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2456-2466,共11页
Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling.It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing... Apolipoprotein E is the major lipid transporter in the brain and an important player in neuron-astrocyte metabolic coupling.It ensures the survival of neurons under stressful conditions and hyperactivity by nourishing and detoxifying them.Apolipoprotein E polymorphism,combined with environmental stresses and/or age-related alterations,influences the risk of developing late-onset Alzheimer’s disease.In this review,we discuss our current knowledge of how apolipoprotein E homeostasis,i.e.its synthesis,secretion,degradation,and lipidation,is affected in Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease apolipoprotein E autophagy CHOLESTEROL lipid detoxification lipid transport lysosomal failure metabolic impairment TRIACYLGLYCEROL
下载PDF
Role of lipids in the control of autophagy and primary cilium signaling in neurons 被引量:1
16
作者 María Paz Hernández-Cáceres Daniela Pinto-Nuñez +5 位作者 Patricia Rivera Paulina Burgos Francisco Díaz-Castro Alfredo Criollo Maria Jose Yañez Eugenia Morselli 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期264-271,共8页
The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lyso... The brain is,after the adipose tissue,the organ with the greatest amount of lipids and diversity in their composition in the human body.In neurons,lipids are involved in signaling pathways controlling autophagy,a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium,a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development.A crosstalk between primary cilia and autophagy has been established;however,its role in the control of neuronal activity and homeostasis is barely known.In this review,we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons.Then we review the recent literature about specific lipid subclasses in the regulation of autophagy,in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions,specifically focusing on neurons,an area of research that could have major implications in neurodevelopment,energy homeostasis,and neurodegeneration. 展开更多
关键词 autophagic flux CHOLESTEROL fatty acids GPCR lysosomal storage diseases NEURONS NPC1 PHOSPHOINOSITIDES primary cilium
下载PDF
The role of lysosome in regulated necrosis 被引量:10
17
作者 Aqu Alu Xuejiao Han +3 位作者 Xuelei Ma Min Wu Yuquan Wei Xiawei Wei 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2020年第10期1880-1903,共24页
Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules,particles,and organelles.Currently,the pivotal role of lysosome in regulating cell death is drawing great attention... Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules,particles,and organelles.Currently,the pivotal role of lysosome in regulating cell death is drawing great attention.Over the past decades,we largely focused on how lysosome influences apoptosis and autophagic cell death.However,extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis(RN).Different types of RN have been uncovered,among which,necroptosis,ferroptosis,and pyroptosis are under the most intensive investigation.It becomes a hot topic nowadays to target RN as a therapeutic intervention,since it is important in many patho/physiological settings and contributing to numerous diseases.It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases.Therefore,we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN,especially in that of necroptosis,ferroptosis,and pyroptosis. 展开更多
关键词 Ferroptosis lysosome NECROPTOSIS PYROPTOSIS Regulated necrosis
原文传递
Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells 被引量:8
18
作者 Qi Liu Yi Luo +7 位作者 Yun Zhao Pingping Xiang Jinyun Zhu Wangwei Jing Wenjing Jin Mingyao Chen Ruikang Tang Hong Yu 《Bioactive Materials》 SCIE 2022年第2期478-493,共16页
Vascular calcification(VC)is a common characteristic of aging,diabetes,chronic renal failure,and atherosclerosis.The basic component of VC is hydroxyapatite(HAp).Nano-sized HAp(nHAp)has been identified to play an esse... Vascular calcification(VC)is a common characteristic of aging,diabetes,chronic renal failure,and atherosclerosis.The basic component of VC is hydroxyapatite(HAp).Nano-sized HAp(nHAp)has been identified to play an essential role in the development of pathological calcification of vasculature.However,whether nHAp can induce calcification in vivo and the mechanism of nHAp in the progression of VC remains unclear.We discovered that nHAp existed both in vascular smooth muscle cells(VSMCs)and their extracellular matrix(ECM)in the calcified arteries from patients.Synthetic nHAp had similar morphological and chemical properties as natural nHAp recovered from calcified artery.nHAp stimulated osteogenic differentiation and accelerated mineralization of VSMCs in vitro.Synthetic nHAp could also directly induce VC in vivo.Mechanistically,nHAp was internalized into lysosome,which impaired lysosome vacuolar H+-ATPase for its acidification,therefore blocked autophagic flux in VSMCs.Lysosomal re-acidification by cyclic-3′,5′-adenosine monophosphate(cAMP)significantly enhanced autophagic degradation and attenuated nHAp-induced calcification.The accumulated autophagosomes and autolysosomes were converted into calcium-containing exosomes which were secreted into ECM and accelerated vascular calcium deposit.Inhibition of exosome release in VSMCs decreased calcium deposition.Altogether,our results demonstrated a repressive effect of nHAp on lysosomal acidification,which inhibited autophagic degradation and promoted a conversion of the accumulated autophagic vacuoles into exosomes that were loaded with undissolved nHAp,Ca^(2+),Pi and ALP.These exosomes bud off the plasma membrane,deposit within ECM,and form calcium nodules.Vascular calcification was thus accelerated by nHAP through blockage of autophagic flux in VSMCs. 展开更多
关键词 NANO-HYDROXYAPATITE Vascular calcification AUTOPHAGY lysosome EXOSOME
原文传递
Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discover 被引量:4
19
作者 Qixin Chen Xintian Shao +9 位作者 Zhiqi Tian Yang Chen Payel Mondal Fei Liu Fengshan Wang Peixue Ling Weijiang He Kai Zhang Zijian Guo Jiajie Diao 《Nano Research》 SCIE EI CAS CSCD 2019年第5期1009-1015,共7页
Technology advances in genomics,proteomics,and metabolomics largely expanded the pool of potential therapeutic targets.Compared with the in vitro setting,cell-based screening assays have been playing a key role in the... Technology advances in genomics,proteomics,and metabolomics largely expanded the pool of potential therapeutic targets.Compared with the in vitro setting,cell-based screening assays have been playing a key role in the processes of drug discovery and development.Besides the commonly used strategies based on colorimetric and cell viability,we reason that methods that capture the dynamic cellular events will facilitate optimal hit identification with high sensitivity and specificity.Herein,we propose a live-cell screening strategy using structured illumination microscopy (SIM) combined with an automated cell colocalization analysis software,CellprofilerTM,to screen and discover drugs for mitochondria and lysosomes interaction at a nanoscale resolution in living cells.This strategy quantitatively benchmarks the mitochondria-lysosome interactions such as mitochondria and lysosomes contact (MLC) and mitophagy.The automatic quantitative analysis also resolves fine changes of the mitochondria-lysosome interaction in response to genetic and pharmacological interventions.Super-resolution live-cell imaging on the basis of quantitative analysis opens up new avenues for drug screening and development by targeting dynamic organelle interactions at the nanoscale resolution,which could facilitate optimal hit identification and potentially shorten the cycle of drug discovery. 展开更多
关键词 drug screening MITOCHONDRIA lysosome MITOPHAGY structured ILLUMINATION microscopy
原文传递
α-Synuclein aggregation and transmission in Parkinson’s disease: a link to mitochondria and lysosome 被引量:5
20
作者 Rui Wang Hongyang Sun +1 位作者 Haigang Ren Guanghui Wang 《Science China(Life Sciences)》 SCIE CAS CSCD 2020年第12期1850-1859,共10页
The presence of intraneuronal Lewy bodies(LBs) and Lewy neurites(LNs) in the substantia nigra(SN) composed of aggregatedα-synuclein(α-syn) has been recognized as a hallmark of pathological changes in Parkinson’s di... The presence of intraneuronal Lewy bodies(LBs) and Lewy neurites(LNs) in the substantia nigra(SN) composed of aggregatedα-synuclein(α-syn) has been recognized as a hallmark of pathological changes in Parkinson’s disease(PD). Numerous studies have shown that aggregated α-syn is necessary for neurotoxicity. Meanwhile, the mitochondrial and lysosomal dysfunctions are associated with α-syn pathogenicity. The hypothesis that α-syn transmission in the human brain contributes to the instigation and progression of PD has provided insights into PD pathology. This review will provide a brief overview of increasing researches that shed light on the relationship of α-syn aggregation with mitochondrial and lysosomal dysfunctions, and highlight recent understanding of α-syn transmission in PD pathology. 展开更多
关键词 Α-SYNUCLEIN Lewy pathology MITOCHONDRIA lysosome AGGREGATION transmission
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部