Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6...Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.展开更多
The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neuro...The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.展开更多
[Objective] The aim of the study is to construct cDNA library of midgut tissue of wild silkworm and isolate the serine protease gene. [Method] The midgut tissue-specific cDNA library of wild silkworm was constructed v...[Objective] The aim of the study is to construct cDNA library of midgut tissue of wild silkworm and isolate the serine protease gene. [Method] The midgut tissue-specific cDNA library of wild silkworm was constructed via cDNA Library Construction Kit (TaKaRa), then the serine protease gene was cloned via sequencing of the yielded cDNA library. [Result] The titer of cDNA library reached 6.2×105 pfu/ml, average insert size was about 1.2 kb. The serine protease gene cDNA fragment was obtained from colony sequencing (Accession No: EU672968). The nucleotide sequence of the cloned 854 bp fragment encodes 284 amino acid residues. Homology analyses showed some homology between putative amino acid sequence of the cloned fragment and amino acid sequences of serine proteases from other ten insects. [Conclusion] The results may avail to reveal the resistance of silkworm and wild silkworm to exotic intrusion.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.sU2139205,41774011,41874011)the National Key Research and Development Program of China(Grant No.2018YFC1503605)。
文摘Three M_(W)>7.0 earthquakes in 2020-2021 occurred in the Shumagin seismic gap and its adjacent area of the Alaska-Aleutian subduction zone,including the Mw7.8 Simeonof thrust earthquake on July 22,2020,the M_(W)7.6 Sand Point strike-slip earthquake on October 19,2020,and the M_(W)8.2 Chignik thrust earthquake on July 29,2021.The spatial and temporal proximity of these three earthquakes prompts us to probe stress-triggering effects among them.Here we examine the coseismic Coulomb stress change imparted by the three earthquakes and their influence on the subduction interface.Our results show that:(1)The Simeonof earthquake has strong loading effects on the subsequent Sand Point and Chignik earthquakes,with the Coulomb stress changes of 3.95 bars and 2.89 bars,respectively.The Coulomb stress change caused by the Sand Point earthquake at the hypocenter of the Chignik earthquake is merely around 0.01 bars,suggesting the negligible triggering effect on the latter earthquake;(2)The triggering effects of the Simeonof,Sand Point,and Chignik earthquakes on aftershocks within three months are not well pronounced because of the triggering rates of 38%,14%,and 43%respectively.Other factors may have played an important role in promoting the occurrence of these aftershocks,such as the roughness of the subduction interface,the complicated velocity structure of the lithosphere,and the heterogeneous prestress therein;(3)The three earthquakes caused remarkable coseismic Coulomb stress changes at the subduction interface nearby these mainshocks,with an average Coulomb stress change of 3.2 bars in the shallow region directly inwards the trench.
文摘The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
文摘[Objective] The aim of the study is to construct cDNA library of midgut tissue of wild silkworm and isolate the serine protease gene. [Method] The midgut tissue-specific cDNA library of wild silkworm was constructed via cDNA Library Construction Kit (TaKaRa), then the serine protease gene was cloned via sequencing of the yielded cDNA library. [Result] The titer of cDNA library reached 6.2×105 pfu/ml, average insert size was about 1.2 kb. The serine protease gene cDNA fragment was obtained from colony sequencing (Accession No: EU672968). The nucleotide sequence of the cloned 854 bp fragment encodes 284 amino acid residues. Homology analyses showed some homology between putative amino acid sequence of the cloned fragment and amino acid sequences of serine proteases from other ten insects. [Conclusion] The results may avail to reveal the resistance of silkworm and wild silkworm to exotic intrusion.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.