Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive...Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.展开更多
The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The ...The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The interest is that the nonlinear term may be展开更多
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An exa...Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.展开更多
By using Mawhin's continuation theorem, the existence of a solution for a class of m-point boundary value problem at resonance with one-dimensional p-Laplacian is obtained. An example is given to demonstrate the main...By using Mawhin's continuation theorem, the existence of a solution for a class of m-point boundary value problem at resonance with one-dimensional p-Laplacian is obtained. An example is given to demonstrate the main result of this paper.展开更多
By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach s...By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach spaces.展开更多
In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 t 1, u(0) = 0, u(1)...In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 t 1, u(0) = 0, u(1) =sum (μiDpu(t)|t = ξi ) from i =1 to ∞ m-2, where q ∈R , 1 q ≤2 , 0 ξ1 ξ2 ··· ξm-2 ≤ 1/2 , μi ∈[0 , +∞) and p = q-1/2 , Γ(q) sum (μiξi(q-1)/2 Γ(( q+1)/2) from i =1 to ∞ m-2,Dq is the standard Riemann-Liouville differentiation, and f ∈C ([0 , 1]×[0 , +∞) , [0 , +∞)). By using the Leggett-Williams fixed point theorem on a convex cone, some multiplicity results of positive solutions are obtained.展开更多
In this paper,we are concerned with the existence of positive solutions to an m-point boundary value problem with p-Laplacian of nonlinear fractional differential equation.By means of Krasnosel’skii fixed-point theor...In this paper,we are concerned with the existence of positive solutions to an m-point boundary value problem with p-Laplacian of nonlinear fractional differential equation.By means of Krasnosel’skii fixed-point theorem on a convex cone and Leggett-Williams fixed-point theorem,the existence results of solutions are obtained.展开更多
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
In this article, we establish the existence of at least two positive solutions for the semi-positone m-point boundary value problem with a parameter u (t) + λf (t, u) = 0, t ∈ (0, 1), u (0) = sum (biu (ξ...In this article, we establish the existence of at least two positive solutions for the semi-positone m-point boundary value problem with a parameter u (t) + λf (t, u) = 0, t ∈ (0, 1), u (0) = sum (biu (ξ i )) from i=1 to m-2, u(1)= sum (aiu(ξ i )) from i=1 to m-2, where λ 〉 0 is a parameter, 0 〈 ξ 1 〈 ξ 2 〈 ··· 〈 ξ m 2 〈 1 with 0 〈sum ai from i=1 to m-2 〈 1, sum bi from i=1 to m-2 =1 b i 〈 1, a i , b i ∈ [0, ∞) and f (t, u) ≥ M with M is a positive constant. The method employed is the Leggett-Williams fixed-point theorem. As an application, an example is given to demonstrate the main result.展开更多
Sufficient conditions for the existence of positive solution to superlinear semi-positone singular m-point boundary value problem are given by cone expansion and compression theorem in norm type.
By using fixed-point theorems, some new results for multiplicity of positive solutions for a class of second order m-point boundary value problem are obtained. The associated Green's function of this problem is also ...By using fixed-point theorems, some new results for multiplicity of positive solutions for a class of second order m-point boundary value problem are obtained. The associated Green's function of this problem is also given.展开更多
By using fixed-point theorems, some new results for multiplicity of positive solutions for some second order m-point boundary value problems are obtained.The associated Green's function of these problems are also given.
By constructing a particular closed convex set and applying the Monch fixedpoint theorem, we study the existence of positive solution for a class of singular m-point boundary value problems.
Multiplicity of positive solutions to some second order m-point boundary value problems are considered. By fixed-point theorems in a cone, some new results are obtained. The associated Green’s function of these probl...Multiplicity of positive solutions to some second order m-point boundary value problems are considered. By fixed-point theorems in a cone, some new results are obtained. The associated Green’s function of these problems are also given.展开更多
In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to s...In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.展开更多
By a fixed point theorem,some new results on the multiplicity of positive solutions to some m-point boundary value problems of second-order functional differential equations are obtained. The associated Green’s funct...By a fixed point theorem,some new results on the multiplicity of positive solutions to some m-point boundary value problems of second-order functional differential equations are obtained. The associated Green’s functions of the problems are also given.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quan...Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
文摘Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.
基金the Natural Science Foundation of Hebei Province of China(No.A2006000298)the Doctoral Foundation of Hebei Province of China(No.B2004204)
文摘The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The interest is that the nonlinear term may be
文摘Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.
基金The NSF (Kj2007b055) of Anhui Educational Departmentthe Youth Project Foundation (2007jqL101,2007jqL102) of Anhui Educational Department.
文摘By using Mawhin's continuation theorem, the existence of a solution for a class of m-point boundary value problem at resonance with one-dimensional p-Laplacian is obtained. An example is given to demonstrate the main result of this paper.
基金Supported by the Research Project of Bozhou Teacher’s College(BSKY0805)Supported by the Natural Science Research Project of Anhui Province(KJ2009B093)
文摘By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach spaces.
基金supported by Hunan Provincial Natural Science Foundation of China(11JJ3009)supported by the Scientific Research Foundation of Hunan Provincial Education Department(11C1187)the Construct Program of the Key Discipline in Hunan Province
文摘In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 t 1, u(0) = 0, u(1) =sum (μiDpu(t)|t = ξi ) from i =1 to ∞ m-2, where q ∈R , 1 q ≤2 , 0 ξ1 ξ2 ··· ξm-2 ≤ 1/2 , μi ∈[0 , +∞) and p = q-1/2 , Γ(q) sum (μiξi(q-1)/2 Γ(( q+1)/2) from i =1 to ∞ m-2,Dq is the standard Riemann-Liouville differentiation, and f ∈C ([0 , 1]×[0 , +∞) , [0 , +∞)). By using the Leggett-Williams fixed point theorem on a convex cone, some multiplicity results of positive solutions are obtained.
基金supported by the National Natural Science Foundation of China (10971173)the Natural Science Foundation of Hunan Province (10JJ3096)
文摘In this paper,we are concerned with the existence of positive solutions to an m-point boundary value problem with p-Laplacian of nonlinear fractional differential equation.By means of Krasnosel’skii fixed-point theorem on a convex cone and Leggett-Williams fixed-point theorem,the existence results of solutions are obtained.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
基金Supported by Fund of National Natural Science of China (No. 10371068)Science Foundation of Business College of Shanxi University (No. 2008053)
文摘In this article, we establish the existence of at least two positive solutions for the semi-positone m-point boundary value problem with a parameter u (t) + λf (t, u) = 0, t ∈ (0, 1), u (0) = sum (biu (ξ i )) from i=1 to m-2, u(1)= sum (aiu(ξ i )) from i=1 to m-2, where λ 〉 0 is a parameter, 0 〈 ξ 1 〈 ξ 2 〈 ··· 〈 ξ m 2 〈 1 with 0 〈sum ai from i=1 to m-2 〈 1, sum bi from i=1 to m-2 =1 b i 〈 1, a i , b i ∈ [0, ∞) and f (t, u) ≥ M with M is a positive constant. The method employed is the Leggett-Williams fixed-point theorem. As an application, an example is given to demonstrate the main result.
基金supported by the National Natural Science Foundation of China (10671167)the Research Foundation of Liaocheng University (31805).
文摘Sufficient conditions for the existence of positive solution to superlinear semi-positone singular m-point boundary value problem are given by cone expansion and compression theorem in norm type.
文摘By using fixed-point theorems, some new results for multiplicity of positive solutions for a class of second order m-point boundary value problem are obtained. The associated Green's function of this problem is also given.
基金the Natural Science Foundation of Anhui Educational Department(Kj2007b055) Youth Project Foundation of Anhui Educational Department(2007jqL101,2007jqL102)
文摘By using fixed-point theorems, some new results for multiplicity of positive solutions for some second order m-point boundary value problems are obtained.The associated Green's function of these problems are also given.
基金The project is supported by the National Natural Science Foundation of China(10671167)the Research Foundation of Liaocheng University(31805).
文摘By constructing a particular closed convex set and applying the Monch fixedpoint theorem, we study the existence of positive solution for a class of singular m-point boundary value problems.
基金sponsored by Natural Science Foundation of Anhui Educational Department(Kj2007b055) Youth Project Foundation of Anhui Educational Department (2007jqL1012007jqL102)
文摘Multiplicity of positive solutions to some second order m-point boundary value problems are considered. By fixed-point theorems in a cone, some new results are obtained. The associated Green’s function of these problems are also given.
基金Sponsored by the National Natural Science Foundation of China (No.10971238)
文摘In his paper,we obtain a general theorem concerning the existence of solutions to an m-point boundary value problem for the second-order differential equation with impulses.Moreover,the result can also be applied to study the usual m-point boundary value problem at resonance without impulses.
基金sponsored by the Natural Science Foundation of Anhui Educational Department(KJ2009B100)Youth Project Foundation of Anhui Educational Department (2009SQRZ155)
文摘By a fixed point theorem,some new results on the multiplicity of positive solutions to some m-point boundary value problems of second-order functional differential equations are obtained. The associated Green’s functions of the problems are also given.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金supported by the NSF of Hebei Province(A2022208007)the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)。
文摘Clifford analysis is an important branch of modern analysis;it has a very important theoretical significance and application value,and its conclusions can be applied to the Maxwell equation,Yang-Mill field theory,quantum mechanics and value problems.In this paper,we first give the definition of a quasi-Cauchy type integral in complex Clifford analysis,and get the Plemelj formula for it.Second,we discuss the H?lder continuity for the Cauchy-type integral operators with values in a complex Clifford algebra.Finally,we prove the existence of solutions for a class of linear boundary value problems and give the integral representation for the solution.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.