A new fuzzy support vector machine algorithm with dual membership values based on spectral clustering method is pro- posed to overcome the shortcoming of the normal support vector machine algorithm, which divides the ...A new fuzzy support vector machine algorithm with dual membership values based on spectral clustering method is pro- posed to overcome the shortcoming of the normal support vector machine algorithm, which divides the training datasets into two absolutely exclusive classes in the binary classification, ignoring the possibility of "overlapping" region between the two training classes. The proposed method handles sample "overlap" effi- ciently with spectral clustering, overcoming the disadvantages of over-fitting well, and improving the data mining efficiency greatly. Simulation provides clear evidences to the new method.展开更多
Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic fie...Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved.展开更多
The principle of discernibility matrix serves as a tool to discuss and analyze two algorithms of traditional inductive machine learning, AQ11 and ID3. The results are: (1) AQ11 and its family can be completely specifi...The principle of discernibility matrix serves as a tool to discuss and analyze two algorithms of traditional inductive machine learning, AQ11 and ID3. The results are: (1) AQ11 and its family can be completely specified by the principle of discernibility matrix; (2) ID3 can be partly, but not naturally, specified by the principle of discernibility matrix; and (3) The principle of discernibility matrix is employed to analyze Cendrowska sample set, and it shows the weaknesses of knowledge representation style of decision tree in theory.展开更多
基金supported by the National Natural Science Foundation of China (7083100170821061)
文摘A new fuzzy support vector machine algorithm with dual membership values based on spectral clustering method is pro- posed to overcome the shortcoming of the normal support vector machine algorithm, which divides the training datasets into two absolutely exclusive classes in the binary classification, ignoring the possibility of "overlapping" region between the two training classes. The proposed method handles sample "overlap" effi- ciently with spectral clustering, overcoming the disadvantages of over-fitting well, and improving the data mining efficiency greatly. Simulation provides clear evidences to the new method.
基金supported by the National Natural Science Foundation of China(60903005)the National Basic Research Program of China(973 Program)(2012CB821206)
文摘Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved.
基金This research is partly supported by the National '863' High-Tech Programme (No. 863-306-ZT06-07-1)and NKPSF (G1998030508).
文摘The principle of discernibility matrix serves as a tool to discuss and analyze two algorithms of traditional inductive machine learning, AQ11 and ID3. The results are: (1) AQ11 and its family can be completely specified by the principle of discernibility matrix; (2) ID3 can be partly, but not naturally, specified by the principle of discernibility matrix; and (3) The principle of discernibility matrix is employed to analyze Cendrowska sample set, and it shows the weaknesses of knowledge representation style of decision tree in theory.