期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
Research on intelligent search-and-secure technology in accelerator hazardous areas based on machine vision
1
作者 Ying-Lin Ma Yao Wang +1 位作者 Hong-Mei Shi Hui-Jie Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期96-107,共12页
Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.How... Prompt radiation emitted during accelerator operation poses a significant health risk,necessitating a thorough search and securing of hazardous areas prior to initiation.Currently,manual sweep methods are employed.However,the limitations of manual sweeps have become increasingly evident with the implementation of large-scale accelerators.By leveraging advancements in machine vision technology,the automatic identification of stranded personnel in controlled areas through camera imagery presents a viable solution for efficient search and security.Given the criticality of personal safety for stranded individuals,search and security processes must be sufficiently reliable.To ensure comprehensive coverage,180°camera groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring range.The YOLOV8 network model was modified to enable the detection of small targets,such as hands and feet,as well as larger targets formed by individuals near the cameras.Furthermore,the system incorporates a pedestrian recognition model that detects human body parts,and an information fusion strategy is used to integrate the detected head,hands,and feet with the identified pedestrians as a cohesive unit.This strategy enhanced the capability of the model to identify pedestrians obstructed by equipment,resulting in a notable improvement in the recall rate.Specifically,recall rates of 0.915 and 0.82were obtained for Datasets 1 and 2,respectively.Although there was a slight decrease in accuracy,it aligned with the intended purpose of the search-and-secure software design.Experimental tests conducted within an accelerator tunnel demonstrated the effectiveness of this approach in achieving reliable recognition outcomes. 展开更多
关键词 Search and secure machine vision CAMERA Human body parts recognition Particle accelerator Hazardous area
下载PDF
Dynamic Vision-Based Machinery Fault Diagnosis With Cross-Modality Feature Alignment
2
作者 Xiang Li Shupeng Yu +2 位作者 Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2068-2081,共14页
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In... Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis. 展开更多
关键词 Condition monitoring domain generalization eventbased camera fault diagnosis machine vision
下载PDF
Performance Assessment on Corrosion Resistance of Refractory Materials Based on High-temperature Machine Vision Technology
3
作者 Chenchen LIU Ao HUANG +3 位作者 Yan YU Guoping WEI Shenghao LI Huazhi GU 《China's Refractories》 CAS 2024年第3期42-48,共7页
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media... Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance. 展开更多
关键词 refractory materials high-temperature machine vision Digital Image Correlation(DIC) corrosion resistance
下载PDF
Automatic Monitoring System for 3-D Deformation of Crustal Fault Based on Laser and Machine Vision
4
作者 Qingshan Wang Guoying Su +3 位作者 Qingzun Ma Haiquan Yin Zhihang Liu Chuanzhen Lv 《Instrumentation》 2024年第2期44-52,共9页
An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated... An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway. 展开更多
关键词 deformation measurement crustal fault automatic monitoring laser spot machine vision
下载PDF
基于Machine Vision技术的电梯超载自动化检测方法研究
5
作者 赵琳娜 贡伟建 《技术与市场》 2024年第8期20-23,31,共5页
为提高电梯的使用安全性,避免过量的空间占有率导致的故障问题,提出了基于Machine Vision技术的电梯超载自动检测方法。通过电梯内部的摄像头得到影像数据,然后对图像进行切片与去噪处理,以此得到方差图,并提高算法对边缘图像的识别能力... 为提高电梯的使用安全性,避免过量的空间占有率导致的故障问题,提出了基于Machine Vision技术的电梯超载自动检测方法。通过电梯内部的摄像头得到影像数据,然后对图像进行切片与去噪处理,以此得到方差图,并提高算法对边缘图像的识别能力,明确前景面积的占有率,通过此方法得到整个电梯空间的占有率数据,从而实现自动化判断电梯是否超载的功能。试验结果表明:此方法可精确计算出电梯的空间占有率,并能够实现自动化监控的目的,具有良好的适用性。 展开更多
关键词 machine vision 电梯超载 自动化检测
下载PDF
Machine Vision Based Fish Cutting Point Prediction for Target Weight
6
作者 Yonghun Jang Yeong-Seok Seo 《Computers, Materials & Continua》 SCIE EI 2023年第4期2247-2263,共17页
Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offis... Food processing companies pursue the distribution of ingredientsthat were packaged according to a certain weight. Particularly, foods like fishare highly demanded and supplied. However, despite the high quantity offish to be supplied, most seafood processing companies have yet to installautomation equipment. Such absence of automation equipment for seafoodprocessing incurs a considerable cost regarding labor force, economy, andtime. Moreover, workers responsible for fish processing are exposed to risksbecause fish processing tasks require the use of dangerous tools, such aspower saws or knives. To solve these problems observed in the fish processingfield, this study proposed a fish cutting point prediction method based onAI machine vision and target weight. The proposed method performs threedimensional(3D) modeling of a fish’s form based on image processing techniquesand partitioned random sample consensus (RANSAC) and extracts 3Dfeature information. Then, it generates a neural network model for predictingfish cutting points according to the target weight by performing machinelearning of the extracted 3D feature information and measured weight information.This study allows for the direct cutting of fish based on cutting pointspredicted by the proposed method. Subsequently, we compared the measuredweight of the cut pieces with the target weight. The comparison result verifiedthat the proposed method showed a mean error rate of approximately 3%. 展开更多
关键词 machine vision fish cutting weight prediction artificial intelligence deep learning image processing
下载PDF
Human and Machine Vision Based Indian Race Classification Using Modified-Convolutional Neural Network
7
作者 Vani A.Hiremani Kishore Kumar Senapati 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2603-2618,共16页
The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographica... The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community. 展开更多
关键词 Data collection and preparation human vision analysis machine vision canny edge approximation method color local binary patterns convolutional neural network
下载PDF
Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors:Challenges and Future Trends
8
作者 Narayanan Ganesh Rajendran Shankar +3 位作者 Miroslav Mahdal Janakiraman SenthilMurugan Jasgurpreet Singh Chohan Kanak Kalita 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期103-141,共39页
Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than ot... Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers. 展开更多
关键词 Neural network machine vision classification object detection deep learning
下载PDF
Vision-based Dynamics Monitoring(VDM)for Diagnosing the Variations of Wind Turbine Tower Foundation Conditions
9
作者 Yanling Cao Rongfeng Deng +3 位作者 Dongqin Li Yang Guan Yubin Lin Baoshan Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第3期216-224,共9页
A slight uneven settlement of the foundation may cause the wind turbine to shake,tilt,or even collapse,so it is increasingly necessary to realize remote condition monitoring of the foundations.At present,the wind turb... A slight uneven settlement of the foundation may cause the wind turbine to shake,tilt,or even collapse,so it is increasingly necessary to realize remote condition monitoring of the foundations.At present,the wind turbine foundation monitoring system is incomplete.The current monitoring research of the tower foundation is mainly of contact measurements,using acceleration sensors and static-level sensors for monitoring multiple reference points.Such monitoring methods will face some disadvantages,such as the complexity of monitoring deployment,the cost of manpower,and the load effect on the tower structure.To solve above issues,this paper aims to investigate wind turbine tower foundation variation dynamic monitoring based on machine vision.Machine vision monitoring is a kind of noncontact measurement,which helps to realize comprehensive diagnosis of early foundation uneven settlement and loose faults.The FEA model is firstly investigated as the theoretical foundation to investigate the dynamics of the tower foundation.Second,the Gaussian-based vibration detection is adopted by tracking the tower edge points.Finally,a tower structure with distributed foundation support is tested.The modal parameters obtained from the visual measurement are compared with those from the accelerometer,proving the vision method can effectively monitor the issues with tower foundation changes. 展开更多
关键词 distributed foundation stiffness finite element analysis Gaussian fitting machine vision
下载PDF
High-precision automatic measurement of two-dimensional geometric features based on machine vision 被引量:6
10
作者 何博侠 何勇 +1 位作者 薛蓉 杨洪锋 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期428-433,共6页
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a... To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts. 展开更多
关键词 machine vision two-dimensional geometric features high-precision measurement automatic measurement
下载PDF
Development of an automatic monitoring system for rice light-trap pests based on machine vision 被引量:15
11
作者 YAO Qing FENG Jin +9 位作者 TANG Jian XU Wei-gen ZHU Xu-hua YANG Bao-jun LU Jun XIE Yi-ze YAO Bo WU Shu-zhen KUAI Nai-yang WANG Li-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第10期2500-2513,共14页
Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still inv... Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system. 展开更多
关键词 automatic monitoring system light trap rice pest machine vision image processing convolutional neural network
下载PDF
Accurate Measurement Method for Tube's Endpoints Based on Machine Vision 被引量:10
12
作者 LIU Shaoli JIN Peng +2 位作者 LIU Jianhua WANG Xiao SUN Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期152-163,共12页
Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then ... Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, ll tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 ram. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement. 展开更多
关键词 machine vision non-contact measurement reflection light tube endpoint measurement
下载PDF
Selection for high quality pepper seeds by machine vision and classifiers 被引量:7
13
作者 TU Ke-ling LI Lin-juan +2 位作者 YANG Li-ming WANG Jian-hua SUN Qun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第9期1999-2006,共8页
This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus seve... This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds. 展开更多
关键词 pepper seed image processing machine vision seed vigor binary logistic regression multilayer perceptron neural network
下载PDF
Machine Vision Based Measurement of Dynamic Contact Angles in Microchannel Flows 被引量:5
14
作者 Valtteri Heiskanen Kalle Marjanen Pasi Kallio 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第4期282-290,共9页
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of mate... When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles. 展开更多
关键词 digital image processing machine vision MICROFLUIDICS microchannel flow dynamic contact angle image based measurement
下载PDF
Quantifying muskmelon fruit attributes with A-TEP-based model and machine vision measurement 被引量:5
15
作者 CHANG Li-ying HE San-peng +2 位作者 LIU Qian XIANG Jia-lin HUANG Dan-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第6期1369-1379,共11页
In this study, we established a dynamic morphological model using the accumulated thermal effectiveness and photosynthetic active radiation (PAR) (A-TEP), aiming to explore the relationship between muskmelon (Cuc... In this study, we established a dynamic morphological model using the accumulated thermal effectiveness and photosynthetic active radiation (PAR) (A-TEP), aiming to explore the relationship between muskmelon (Cucumis melo L.) fruit attributes and environmental factors. Muskmelon surface color was described by parameters of red, green, blue, hue, saturation and brightness (HSI). Three characteristic parameters, gray level co-occurrence matrix (GLCM), angular second moment (ASM), entropy, contrast, and the coverage rate were used to describe the process of muskmelon fruit netting formation. ASM was not significant difference during muskmelon fruit growth. The number and deep of netting stripes gradually increased with fruit growth. Coverage rate increased rapidly for 15-30 d after pollination. The vertical and horizontal diameters of muskmelon fruit were followed a logistic curve. And root mean squared errors (RMSE) between the simulated and measured vertical and horizontal diameters were 3.527 and 4.696 mm, respectively. RMSE of red, green, blue, saturation and brightness were 0.999, 2.690, 2.992, 0.033 and 5.51, respectively, and the RMSE for entropy, contrast and coverage rates were 0.077, 0.063 and 0.015, respectively, indicating a well consistent between measured and simulated values. 展开更多
关键词 machine vision technology fruit attributes A-TEP skin netting coverage rate
下载PDF
Machine vision inspection of rice seed based on Hough transform 被引量:4
16
作者 成芳 应义斌 《Journal of Zhejiang University Science》 EI CSCD 2004年第6期663-667,共5页
A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black backg... A machine vision system was developed to inspect the quality of rice seeds. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and IIyou were evaluated. The images of both sides of rice seed with black background and white background were acquired with the image processing system for identifying external features of rice seeds. Five image sets consisting of 600 original images each were obtained. Then a digital image processing algorithm based on Hough transform was developed to inspect the rice seeds with incompletely closed glumes. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96% for normal seeds, 92% for seeds with fine fissure and 87% for seeds with incompletely closed glumes. The algorithm was proved to be applicable to different seed varieties and insensitive to the color of the background. 展开更多
关键词 Hough transform Incompletely closed glumes Rice seed machine vision
下载PDF
Machine vision system for visual defect inspection of TFT-LCD 被引量:2
17
作者 张昱 张健 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第6期773-778,共6页
To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-... To improve the identification for visual defect of TFF-LCD, a new machine vision system is proposed, which is superior to human eye inspection. The system respectively employs a CCD camera to capture the image of TFT-LCD panel and an image processing system to identify potential visual defects. Image pre-processing, such as average filtering and geometric correction, was performed on the captured image, and then a candidate area of defect was segmented from the background. Feature information extracted from the area of interest entered a fuzzy rule-based classifier that simulated the defect inspection of TFT-LCD undertaken by experienced technicians. Experiment results show that the machine vision system can obtain fast, objective and accurate inspection compared with subjective and inaccurate human eye inspection. 展开更多
关键词 TFT-LCD machine vision image processing fuzzy rule-based classifier
下载PDF
Online tool-wear measurement of small-diameter end mills based on machine vision 被引量:1
18
作者 袁巍 张之敬 +1 位作者 金鑫 刘冰冰 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期216-220,共5页
The objective of this study was to develop an online tool-wear-measurement scheme for small diameter end-mills based on machine vision to increase tool life and the production efficiency. The geometrical features of w... The objective of this study was to develop an online tool-wear-measurement scheme for small diameter end-mills based on machine vision to increase tool life and the production efficiency. The geometrical features of wear zone of each end mill were analyzed, and three tool wear criterions of small-diameter end mills were defined. With the uEye camera, macro lens and 3-axis micro milling machine, it was proved the feasibility of measuring flank wear with the milling tests on a 45# steel workpiece. The design of experiment (DOE) showed that Vc was the most remarkable effect factor for the flank wear of small-diameter end mill. The wear curve of the experiments of milling was very similar to the Taylor curve. 展开更多
关键词 tool wear end-mills machine vision small diameter flank wear
下载PDF
Design and development of a machine vision system using artificial neural network-based algorithm for automated coal characterization 被引量:1
19
作者 Amit Kumar Gorai Simit Raval +2 位作者 Ashok Kumar Patel Snehamoy Chatterjee Tarini Gautam 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期737-755,共19页
Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizati... Coal is heterogeneous in nature,and thus the characterization of coal is essential before its use for a specific purpose.Thus,the current study aims to develop a machine vision system for automated coal characterizations.The model was calibrated using 80 image samples that are captured for different coal samples in different angles.All the images were captured in RGB color space and converted into five other color spaces(HSI,CMYK,Lab,xyz,Gray)for feature extraction.The intensity component image of HSI color space was further transformed into four frequency components(discrete cosine transform,discrete wavelet transform,discrete Fourier transform,and Gabor filter)for the texture features extraction.A total of 280 image features was extracted and optimized using a step-wise linear regression-based algorithm for model development.The datasets of the optimized features were used as an input for the model,and their respective coal characteristics(analyzed in the laboratory)were used as outputs of the model.The R-squared values were found to be 0.89,0.92,0.92,and 0.84,respectively,for fixed carbon,ash content,volatile matter,and moisture content.The performance of the proposed artificial neural network model was also compared with the performances of performances of Gaussian process regression,support vector regression,and radial basis neural network models.The study demonstrates the potential of the machine vision system in automated coal characterization. 展开更多
关键词 Coal characterization machine vision system Artificial neural network Gaussian process regression
下载PDF
A machine vision approach to seam tracking in real-time in PAW of large-diameter stainless steel tube 被引量:1
20
作者 葛景国 朱政强 +1 位作者 何德孚 陈立功 《China Welding》 EI CAS 2004年第2期151-155,共5页
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ... Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed. 展开更多
关键词 ALGORITHM seam tracking image processing REAL-TIME machine vision plasma arc welding
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部