期刊文献+
共找到12,364篇文章
< 1 2 250 >
每页显示 20 50 100
Development of a machine learning model for predicting abnormalities of commercial airplanes
1
作者 Rossi Passarella Siti Nurmaini +2 位作者 Muhammad Naufal Rachmatullah Harumi Veny Fara Nissya Nur Hafidzoh 《Data Science and Management》 2024年第3期256-265,共10页
Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary ... Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”. 展开更多
关键词 Automatic dependent surveillance-broadcast data Commercial airplanes accident Data-labeling machine learning Prediction model
下载PDF
Use of machine learning models for the prognostication of liver transplantation: A systematic review 被引量:2
2
作者 Gidion Chongo Jonathan Soldera 《World Journal of Transplantation》 2024年第1期164-188,共25页
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p... BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication. 展开更多
关键词 Liver transplantation machine learning models PROGNOSTICATION Allograft allocation Artificial intelligence
下载PDF
Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China
3
作者 Ao Zhang Xin-wen Zhao +8 位作者 Xing-yuezi Zhao Xiao-zhan Zheng Min Zeng Xuan Huang Pan Wu Tuo Jiang Shi-chang Wang Jun He Yi-yong Li 《China Geology》 CAS CSCD 2024年第1期104-115,共12页
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co... Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems. 展开更多
关键词 Landslides susceptibility assessment machine learning Logistic Regression Random Forest Support Vector machines XGBoost Assessment model Geological disaster investigation and prevention engineering
下载PDF
Meta databases of steel frame buildings for surrogate modelling and machine learning-based feature importance analysis 被引量:1
4
作者 Delbaz Samadian Imrose B.Muhit +1 位作者 Annalisa Occhipinti Nashwan Dawood 《Resilient Cities and Structures》 2024年第1期20-43,共24页
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method... Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management. 展开更多
关键词 Surrogate models Meta database Pushover analysis Steel moment resisting frames Sensitivity and explainability analyses machine learning
下载PDF
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region
5
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
下载PDF
Construction and evaluation of a liver cancer risk prediction model based on machine learning
6
作者 Ying-Ying Wang Wan-Xia Yang +3 位作者 Qia-Jun Du Zhen-Hua Liu Ming-Hua Lu Chong-Ge You 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3839-3850,共12页
BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of ... BACKGROUND Liver cancer is one of the most prevalent malignant tumors worldwide,and its early detection and treatment are crucial for enhancing patient survival rates and quality of life.However,the early symptoms of liver cancer are often not obvious,resulting in a late-stage diagnosis in many patients,which significantly reduces the effectiveness of treatment.Developing a highly targeted,widely applicable,and practical risk prediction model for liver cancer is crucial for enhancing the early diagnosis and long-term survival rates among affected individuals.AIM To develop a liver cancer risk prediction model by employing machine learning techniques,and subsequently assess its performance.METHODS In this study,a total of 550 patients were enrolled,with 190 hepatocellular carcinoma(HCC)and 195 cirrhosis patients serving as the training cohort,and 83 HCC and 82 cirrhosis patients forming the validation cohort.Logistic regression(LR),support vector machine(SVM),random forest(RF),and least absolute shrinkage and selection operator(LASSO)regression models were developed in the training cohort.Model performance was assessed in the validation cohort.Additionally,this study conducted a comparative evaluation of the diagnostic efficacy between the ASAP model and the model developed in this study using receiver operating characteristic curve,calibration curve,and decision curve analysis(DCA)to determine the optimal predictive model for assessing liver cancer risk.RESULTS Six variables including age,white blood cell,red blood cell,platelet counts,alpha-fetoprotein and protein induced by vitamin K absence or antagonist II levels were used to develop LR,SVM,RF,and LASSO regression models.The RF model exhibited superior discrimination,and the area under curve of the training and validation sets was 0.969 and 0.858,respectively.These values significantly surpassed those of the LR(0.850 and 0.827),SVM(0.860 and 0.803),LASSO regression(0.845 and 0.831),and ASAP(0.866 and 0.813)models.Furthermore,calibration and DCA indicated that the RF model exhibited robust calibration and clinical validity.CONCLUSION The RF model demonstrated excellent prediction capabilities for HCC and can facilitate early diagnosis of HCC in clinical practice. 展开更多
关键词 Hepatocellular carcinoma CIRRHOSIS Prediction model machine learning Random forest
下载PDF
Development and validation of a machine learning-based early prediction model for massive intraoperative bleeding in patients with primary hepatic malignancies
7
作者 Jin Li Yu-Ming Jia +4 位作者 Zhi-Lei Zhang Cheng-Yu Liu Zhan-Wu Jiang Zhi-Wei Hao Li Peng 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期90-101,共12页
BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperati... BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning. 展开更多
关键词 Primary liver cancer Intraoperative bleeding machine learning model
下载PDF
Establishing and clinically validating a machine learning model for predicting unplanned reoperation risk in colorectal cancer
8
作者 Li-Qun Cai Da-Qing Yang +2 位作者 Rong-Jian Wang He Huang Yi-Xiong Shi 《World Journal of Gastroenterology》 SCIE CAS 2024年第23期2991-3004,共14页
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ... BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis. 展开更多
关键词 Colorectal cancer Postoperative unplanned reoperation Unplanned reoperation Clinical validation NOMOGRAM machine learning models
下载PDF
Prognostic prediction models for postoperative patients with stageⅠtoⅢcolorectal cancer based on machine learning
9
作者 Xiao-Lin Ji Shuo Xu +5 位作者 Xiao-Yu Li Jin-Huan Xu Rong-Shuang Han Ying-Jie Guo Li-Ping Duan Zi-Bin Tian 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第12期4597-4613,共17页
BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to dev... BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients. 展开更多
关键词 Colorectal cancer machine learning Prognostic prediction model Survival times Important variables
下载PDF
Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model
10
作者 Qin Qian Mingjing Lu +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Energy Engineering》 EI 2024年第8期2167-2190,共24页
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea... The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets. 展开更多
关键词 Shale oil production capacity data-driven model model-driven method machine learning
下载PDF
The Extreme Machine Learning Actuarial Intelligent Agricultural Insurance Based Automated Underwriting Model
11
作者 Brighton Mahohoho 《Open Journal of Statistics》 2024年第5期598-633,共36页
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di... The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making. 展开更多
关键词 Extreme machine Learning Actuarial Underwriting machine Learning Intelligent model Agricultural Insurance
下载PDF
Predictive value of machine learning models for lymph node metastasis in gastric cancer: A two-center study
12
作者 Tong Lu Miao Lu +4 位作者 Dong Wu Yuan-Yuan Ding Hao-Nan Liu Tao-Tao Li Da-Qing Song 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第1期85-94,共10页
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t... BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment. 展开更多
关键词 machine learning Prediction model Gastric cancer Lymph node metastasis
下载PDF
Machine learning prediction model for gray-level co-occurrence matrix features of synchronous liver metastasis in colorectal cancer
13
作者 Kai-Feng Yang Sheng-Jie Li +1 位作者 Jun Xu Yong-Bin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1571-1581,共11页
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ... BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions. 展开更多
关键词 Colorectal cancer Synchronous liver metastasis Gray-level co-occurrence matrix machine learning algorithm Prediction model
下载PDF
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
14
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial Data Feature Selection STANDARDIZATION machine Learning models Hybrid models
下载PDF
Integrated Machine Learning and Deep Learning Models for Cardiovascular Disease Risk Prediction: A Comprehensive Comparative Study
15
作者 Shadman Mahmood Khan Pathan Sakan Binte Imran 《Journal of Intelligent Learning Systems and Applications》 2024年第1期12-22,共11页
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra... Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health. 展开更多
关键词 Cardiovascular Disease machine Learning Deep Learning Predictive modeling Risk Assessment Comparative Analysis Gradient Boosting LSTM
下载PDF
Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine 被引量:32
16
作者 李修亮 苏宏业 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第1期95-99,共5页
Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples acco... Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes. 展开更多
关键词 multiple model soft sensor affinity propagation Gaussian process Bayesian committee machine
下载PDF
Thermal Error Modeling Method with the Jamming of Temperature-Sensitive Points'Volatility on CNC Machine Tools 被引量:2
17
作者 Enming MIAO Yi LIU +1 位作者 Jianguo XU Hui LIU 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期566-577,共12页
Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as t... Aiming at the deficiency of the robustness of thermal error compensation models of CNC machine tools, the mechanism of improving the models' robustness is studied by regarding the Leaderway-V450 machining center as the object. Through the analysis of actual spindle air cutting experimental data on Leaderway-V450 machine, it is found that the temperature-sensitive points used for modeling is volatility, and this volatility directly leads to large changes on the collinear degree among modeling independent variables. Thus, the forecasting accuracy of multivariate regression model is severely affected, and the forecasting robustness becomes poor too. To overcome this effect, a modeling method of establishing thermal error models by using single temperature variable under the jamming of temperature-sensitive points' volatility is put forward. According to the actual data of thermal error measured in different seasons, it is proved that the single temperature variable model can reduce the loss of fore- casting accuracy resulted from the volatility of tempera- ture-sensitive points, especially for the prediction of cross quarter data, the improvement of forecasting accuracy is about 5 μm or more. The purpose that improving the robustness of the thermal error models is realized, which can provide a reference for selecting the modelingindependent variable in the application of thermal error compensation of CNC machine tools. 展开更多
关键词 CNC machine tool Thermal error Temperature-sensitive points Forecasting robustnessUnivariate modeling
下载PDF
A machine learning model to predict efficacy of neoadjuvant therapy in breast cancer based on dynamic changes in systemic immunity
18
作者 Yusong Wang Mozhi Wang +6 位作者 Keda Yu Shouping Xu Pengfei Qiu Zhidong Lyu Mingke Cui Qiang Zhang Yingying Xu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第3期218-228,共11页
Objective:Neoadjuvant therapy(NAT)has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival,particularly... Objective:Neoadjuvant therapy(NAT)has been widely implemented as an essential treatment to improve therapeutic efficacy in patients with locally-advanced cancer to reduce tumor burden and prolong survival,particularly for human epidermal growth receptor 2-positive and triple-negative breast cancer.The role of peripheral immune components in predicting therapeutic responses has received limited attention.Herein we determined the relationship between dynamic changes in peripheral immune indices and therapeutic responses during NAT administration.Methods:Peripheral immune index data were collected from 134 patients before and after NAT.Logistic regression and machine learning algorithms were applied to the feature selection and model construction processes,respectively.Results:Peripheral immune status with a greater number of CD3^(+)T cells before and after NAT,and a greater number of CD8^(+)T cells,fewer CD4^(+)T cells,and fewer NK cells after NAT was significantly related to a pathological complete response(P<0.05).The post-NAT NK cell-to-pre-NAT NK cell ratio was negatively correlated with the response to NAT(HR=0.13,P=0.008).Based on the results of logistic regression,14 reliable features(P<0.05)were selected to construct the machine learning model.The random forest model exhibited the best power to predict efficacy of NAT among 10 machine learning model approaches(AUC=0.733).Conclusions:Statistically significant relationships between several specific immune indices and the efficacy of NAT were revealed.A random forest model based on dynamic changes in peripheral immune indices showed robust performance in predicting NAT efficacy. 展开更多
关键词 Breast cancer neoadjuvant therapy peripheral blood lymphocytes machine learning prediction model
下载PDF
Machine Learning-Based Decision-Making Mechanism for Risk Assessment of Cardiovascular Disease 被引量:1
19
作者 Cheng Wang Haoran Zhu Congjun Rao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期691-718,共28页
Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In thi... Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In this paper,a machine learning-based decision-making mechanism for risk assessment of CVD is designed.In this mechanism,the logistics regression analysismethod and factor analysismodel are used to select age,obesity degree,blood pressure,blood fat,blood sugar,smoking status,drinking status,and exercise status as the main pathogenic factors of CVD,and an index systemof risk assessment for CVD is established.Then,a two-stage model combining K-means cluster analysis and random forest(RF)is proposed to evaluate and predict the risk of CVD,and the predicted results are compared with the methods of Bayesian discrimination,K-means cluster analysis and RF.The results show that thepredictioneffect of theproposedtwo-stagemodel is better than that of the comparedmethods.Moreover,several suggestions for the government,the medical industry and the public are provided based on the research results. 展开更多
关键词 CVD influencing factors risk assessment machine learning two-stage model
下载PDF
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County,Three Gorges Reservoir, China 被引量:10
20
作者 Ting Xiao Kunlong Yin +1 位作者 Tianlu Yao Shuhao Liu 《Acta Geochimica》 EI CAS CSCD 2019年第5期654-669,共16页
Landslide susceptibility mapping is vital for landslide risk management and urban planning.In this study,we used three statistical models[frequency ratio,certainty factor and index of entropy(IOE)]and a machine learni... Landslide susceptibility mapping is vital for landslide risk management and urban planning.In this study,we used three statistical models[frequency ratio,certainty factor and index of entropy(IOE)]and a machine learning model[random forest(RF)]for landslide susceptibility mapping in Wanzhou County,China.First,a landslide inventory map was prepared using earlier geotechnical investigation reports,aerial images,and field surveys.Then,the redundant factors were excluded from the initial fourteen landslide causal factors via factor correlation analysis.To determine the most effective causal factors,landslide susceptibility evaluations were performed based on four cases with different combinations of factors("cases").In the analysis,465(70%)landslide locations were randomly selected for model training,and 200(30%)landslide locations were selected for verification.The results showed that case 3 produced the best performance for the statistical models and that case 2 produced the best performance for the RF model.Finally,the receiver operating characteristic(ROC)curve was used to verify the accuracy of each model's results for its respective optimal case.The ROC curve analysis showed that the machine learning model performed better than the other three models,and among the three statistical models,the IOE model with weight coefficients was superior. 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY mapping STATISTICAL model machine learning model Four cases
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部