期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Development Trend of NC Machining Accuracy Control Technology for Aeronautical Structural Parts
1
作者 Qingchun Xiong Qinghua Zhou 《World Journal of Engineering and Technology》 2020年第3期266-279,共14页
High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by... High-performance five-axis computer numerical control machine tools are widely used in the processing of Aeronautical Structural parts. With the increase of service life, the precision of CNC machine tools equipped by aeronautical manufacturing enterprises is declining day by day, while the new generation of aircraft structural parts <span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> developing towards integration, large-scale, complexity, thin-walled and lightweight. It is very easy to produce dimension overshoot and surface quality defects due to unstable processing technology. The machining accuracy of aircraft structural parts is also affected by complex factors such as cutting load, cutting stability, tool error, workpiece deformation, fixture deformation, etc. Because of the complexity of structure and characteristics of Aeronautical Structural parts, the consistency and stability of cutting process are poor. It is easy to cause machining accuracy problems due to tool wear, breakage and cutting chatter. Relevant scholars have carried out a lot of basic research on NC machining accuracy control and achieved fruitful results, but the research on NC machining accuracy control of Aeronautical structural parts is still less. This paper elaborates from three aspects: error modeling method of NC machine tools, error compensation method, prediction and control of machining accuracy, and combines the characteristics of Aeronautical Structural parts, the development trend and demand of NC machining accuracy control technology are put forward.</span> 展开更多
关键词 Aeronautical Structural Parts machining accuracy Error Compensation machining accuracy Control
下载PDF
INFLUENCE OF WHEEL STRUCTURAL PARAMETERS ON MACHINING ACCURACY OF ULTRA-PRECISION PLANE HONING 被引量:4
2
作者 Guo Yinbiao Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, ChinaHu Jianyu Zheng Xiaoguang Katsuo SyojiXiamen University Chongqing University Tohoku University, Japan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第4期344-347,共4页
A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle ... A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy. 展开更多
关键词 fine grit diamond wheel ultra-precision plane honing machining accuracy wheel wear
下载PDF
Modeling and Compensation Technology for the Comprehensive Errors of Fixture System 被引量:10
3
作者 HE Gaiyun YANG Baolong +1 位作者 DING Baihui JIA Hongyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期385-391,共7页
Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixtur... Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing errors of the fixture.How to reduce the position and orientation deviation of workpiece has become a technical problem of improving the processing quality of workpiece.In order to increase machining accuracy,an implementation scheme of fixture system comprehensive errors(FSCE) compensation is proposed.A FSCE parameter model is established by analyzing the influence of contact points on the position and orientation of workpiece.Meanwhile,a parameter identification method for FSCE parameter model is presented by using the 3-2-1 deterministic positioning fixture,which determines the model parameters.Moreover,a FSCE compensation model is formulated to study the compensation value of the cutting position.By using RenishawOMP60 Probe and combining vertical machining centre(SKVH850) equipment with SKY2001 Open CNC System,on-machine verification system(OMVS) is built to measure FSCE successfully.The processing error can be reduced by analyzing the cutting position of the tool with the homogeneous transformation of space coordinate system.Finally,the compensation experiment of real time errors is conducted,and the cylindricality and perpendicularity errors of hole surface are reduced by 30.77% and 28.57%,respectively.This paper provides a new way of realizing the compensation of FCSE,which can improve the machining accuracy of workpiece largely. 展开更多
关键词 fixture system error compensation on-machine verification the position and orientation deviation machining accuracy
下载PDF
Optimization of Honing Wheel Structure Parameters in Ultra-precision Plane Honing
4
作者 SYOJI Katsuo 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期57-58,共2页
Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-p... Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-precision plane honing method by ultra-particle diamond honing wheel is put forward to. The results of experiments indicate: plane-honing wheel has higher machining accuracy and machining efficiency. But at the same time the structure parameters of honing wheel effects on machining accuracy. By analyzing the relation of honing wheel structure parameters and workpiece machining accuracy, the relation of honing wheel and wear coefficient, then this paper gets honing wheel structure parameters in the condition of best accuracy coefficient and wear coefficient, and resolve the problem of choosing honing wheel structure parameters in ultra-precision plane honing at last. This paper analyses the relation of honing wheel structure parameters and workpiece machining accuracy coefficient and wear coefficient, by building relative movement math model of honing wheel and workpiece in plane honing. Through theory calculating, the result indicate: about honing machine tools for large volume manufacture, honing wheel wear is main effect factor, so honing wheel should adopt obverse triangle radial structure. About honing machining for high accuracy and low-batch quantities, machining accuracy coefficient is main factors; so honing wheel should adopt reverse triangle radial structure. Neglected the manufacturing factors of honing wheel, then we can design honing wheel with high power curve structure to meet the need of machining accuracy coefficient and honing wheel wear coefficient in higher accuracy honing. 展开更多
关键词 ultra-precision plane honing honing wheel structure machining accuracy optimization parameters
下载PDF
Investigation on surface structuring generated by electrochemical micromachining
5
作者 Sandip Kunar B. Bhattacharyya 《Advances in Manufacturing》 SCIE CAS CSCD 2017年第3期217-230,共14页
Surface geometrical features and their function- ality depend on the manufacturing process which is employed for fabrication of surface structures. Maskless electrochemical micromachining (EMM) is used to generate v... Surface geometrical features and their function- ality depend on the manufacturing process which is employed for fabrication of surface structures. Maskless electrochemical micromachining (EMM) is used to generate various surface structures for diminishing and controlling friction and wear to increase the lifetime, reliability, and efficiency of mechanical systems. This paper presents a method for the generation of structured surfaces on stainless steel (SS-304) surfaces by using maskless EMM. The micropatterned tool is composed of 800 μm diameter circular holes in a 5 × 5 matrix form. The indigenously developed EMM set up consists of an EMM cell, electrical power supply system, and a controlled vertical cross-flow electrolyte circulation arrangement to control the influence of process parameters during the generation of the micro features of structured surfaces. The single structured cathode tool is used for the mass production of structured surfaces with a short fabrication time in the industrial context by avoiding the use of an individual masking process for each workpiece. The process has been characterized in terms of the effects of predominant process parameters such as machining voltage, electrolyte concentration, duty ratio, pulsed frequency, and machining time on the machined surface characteristics such as current efficiency, machining accuracy, and depth of the circular pattern on the stainless steel surfaces. A mathematical model is also developed to determine the theoretical depth of the dimple pattern and correlate the theoretical depths with actual depths as obtained by experimentation. Moreover, an effort has been made to study the structuringcharacteristics on the basis of micrographs obtained duringthe EMM. 展开更多
关键词 Electrochemical micromachining (EMM)Surface structuring Circular pattern machiningparameters - Current efficiency machining accuracy ·machining depth
原文传递
Coupling evaluation for material removal and thermal control on precision milling machine tools
6
作者 Kexu LAI Huajun CAO +2 位作者 Hongcheng LI Benjie LI Disheng HUANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第1期70-82,共13页
Machine tools are one of the most representative machining systems in manufacturing.The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing.However,previous ... Machine tools are one of the most representative machining systems in manufacturing.The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing.However,previous research merely regarded the material removal(MR)energy as useful energy consumption and ignored the useful energy consumed by thermal control(TC)for maintaining internal thermal stability and machining accuracy.In pursuit of energy-efficient,high-precision machining,more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC.Hence,the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy.An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage.Furthermore,the heat characteristics are analyzed,which can be adopted to represent machining accuracy.Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool,which overwhelms the energy consumption of MR.The forced cooling mode of TC results in a 7%reduction in cutting energy efficiency.Regression analysis shows that heat dissipation positively contributes 54.1%to machining accuracy,whereas heat generation negatively contributes 45.9%.This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy.It can provide a foundation for energyefficient,high-precision machining of machine tools. 展开更多
关键词 machine tools cutting energy efficiency thermal stability machining accuracy coupling evaluation
原文传递
Ion beam figuring of continuous phase plates based on the frequency filtering process
7
作者 Mingjin XU Yifan DAI +3 位作者 Xuhui XIE Lin ZHOU Shengyi LI Wenqiang PENG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第1期110-115,共6页
Ion beam figuring (IBF) technology is an effective technique for fabricating continuous phase plates (CPPs) with small feature structures. This study proposes a multi-pass IBF approach with different beam diameter... Ion beam figuring (IBF) technology is an effective technique for fabricating continuous phase plates (CPPs) with small feature structures. This study proposes a multi-pass IBF approach with different beam diameters based on the frequency filtering method to improve the machining accuracy and efficiency of CPPs during IBF. We present the selection principle of the frequency filtering method, which incorporates different removal functions that maximize material removal over the topographical frequencies being imprinted. Large removal functions are used early in the fabrication to figure the surface profile with low frequency. Small removal functions are used to perform final topographical correction with higher fre- quency and larger surface gradient. A high-precision surface can be obtained as long as the filtering frequency is suitably selected. This method maximizes the high removal efficiency of the large removal function and the high corrective capability of the small removal function. Consequently, the fast convergence of the machining accuracy and efficiency can be achieved. 展开更多
关键词 ion beam figuring (IBF) continuous phaseplates (CPPs) machining accuracy machining efficiency frequency filtering process
原文传递
Prediction of effluent concentration in a wastewater treatment plant using machine learning models 被引量:4
8
作者 Hong Guo Kwanho Jeong +5 位作者 Jiyeon Lim Jeongwon Jo Young Mo Kim Jong-pyo Park Joon Ha Kim Kyung Hwa Cho 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期90-101,共12页
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process mi... Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models-artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R^2), Nash-Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process. 展开更多
关键词 Artificial neural network Support vector machine Effluent concentration Prediction accuracy Sensitivity analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部