For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac...For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.展开更多
Lexicalized reordering models are very important components of phrasebased translation systems.By examining the reordering relationships between adjacent phrases,conventional methods learn these models from the word a...Lexicalized reordering models are very important components of phrasebased translation systems.By examining the reordering relationships between adjacent phrases,conventional methods learn these models from the word aligned bilingual corpus,while ignoring the effect of the number of adjacent bilingual phrases.In this paper,we propose a method to take the number of adjacent phrases into account for better estimation of reordering models.Instead of just checking whether there is one phrase adjacent to a given phrase,our method firstly uses a compact structure named reordering graph to represent all phrase segmentations of a parallel sentence,then the effect of the adjacent phrase number can be quantified in a forward-backward fashion,and finally incorporated into the estimation of reordering models.Experimental results on the NIST Chinese-English and WMT French-Spanish data sets show that our approach significantly outperforms the baseline method.展开更多
基金National Natural Science Foundation of China (70931004)
文摘For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.
基金supported by the National Natural Science Foundation of China(No.61303082) the Research Fund for the Doctoral Program of Higher Education of China(No.20120121120046)
文摘Lexicalized reordering models are very important components of phrasebased translation systems.By examining the reordering relationships between adjacent phrases,conventional methods learn these models from the word aligned bilingual corpus,while ignoring the effect of the number of adjacent bilingual phrases.In this paper,we propose a method to take the number of adjacent phrases into account for better estimation of reordering models.Instead of just checking whether there is one phrase adjacent to a given phrase,our method firstly uses a compact structure named reordering graph to represent all phrase segmentations of a parallel sentence,then the effect of the adjacent phrase number can be quantified in a forward-backward fashion,and finally incorporated into the estimation of reordering models.Experimental results on the NIST Chinese-English and WMT French-Spanish data sets show that our approach significantly outperforms the baseline method.