For the dynamic demand assessment of bridge structures under ship impact loading,it may be prudent to adopt analytical models which permit rapid analysis with reasonable accuracy.Herein,a nonlinear dynamic macro-eleme...For the dynamic demand assessment of bridge structures under ship impact loading,it may be prudent to adopt analytical models which permit rapid analysis with reasonable accuracy.Herein,a nonlinear dynamic macro-element is proposed and implemented to quantify the demand of bridge substructures subjected to ship collisions.In the proposed nonlinear macro-element,a combination of an elastic-plastic spring and a dashpot in parallel is employed to describe the mechanical behavior of ship-bows with strain rate effects.Based on the analytical model using the proposed macro-element,a typical substructure under 5000 deadweight tonnage(DWT) ship collision is discussed.Our analyses indicate that the responses of the structure using the nonlinear macro-element agree with the results from the high resolution model,but the efficiency and feasibility of the proposed method increase significantly in practical applications.Furthermore,comparisons between some current design codes(AASHTO,JTGD60-2004,and TB10002.1-2005) and the developed dynamic analysis method suggest that these design codes may be improved,at least to consider the effect of dynamic amplification on structural demand.展开更多
剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部...剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.展开更多
论文建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)框架的非局部宏微观损伤模型,考虑材料细观物理参数的空间变异性,探讨了材料参数的空间变异性对结构开裂过程的影响。结果表明:考虑材料参数空间变异性后...论文建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)框架的非局部宏微观损伤模型,考虑材料细观物理参数的空间变异性,探讨了材料参数的空间变异性对结构开裂过程的影响。结果表明:考虑材料参数空间变异性后,裂纹扩展路径具有不确定性,建议的模型能够很好地反应材料内在的随机性;随着结构受力情况的复杂化和结构本体缺陷的增多,裂纹开裂模式的变异性也会增大。自相关长度和参数变异系数对结构开裂分析结果有重要影响。展开更多
Atomic absorption and plasma arc spectroscopy were used to determine the contents of Ca,Mn,Cu,Ni,Co,Pb,Zn,Fe,Mg,Hg,Mo,Cr,totally 12 macro and trace elements in yellow,white and black pearls.The results showed that all...Atomic absorption and plasma arc spectroscopy were used to determine the contents of Ca,Mn,Cu,Ni,Co,Pb,Zn,Fe,Mg,Hg,Mo,Cr,totally 12 macro and trace elements in yellow,white and black pearls.The results showed that all the three kinds of pearls contained Ca of more than 3×104 mg/100g.The contents of Mn,Cu,Fe,Mg were above 1mg/100g.Ni,Co,Pb,Mo,Cr,Zn had less contents in the pearls,and Hg had the least.It was also showed that Mn,Cu,Pb,Zn,Mg,Co and Cr contents in different colorpearls varied greatly.展开更多
基金supported by the Ministry of Science and Technology of China (No. SLDRCE 09-B-08)the National Natural Science Foundation of China (Nos. 50978194 and 90915011)+1 种基金the Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe Fund of National Engineering and Research Center for Highways in Mountain Area (No. gsgzj-2010-01),China
文摘For the dynamic demand assessment of bridge structures under ship impact loading,it may be prudent to adopt analytical models which permit rapid analysis with reasonable accuracy.Herein,a nonlinear dynamic macro-element is proposed and implemented to quantify the demand of bridge substructures subjected to ship collisions.In the proposed nonlinear macro-element,a combination of an elastic-plastic spring and a dashpot in parallel is employed to describe the mechanical behavior of ship-bows with strain rate effects.Based on the analytical model using the proposed macro-element,a typical substructure under 5000 deadweight tonnage(DWT) ship collision is discussed.Our analyses indicate that the responses of the structure using the nonlinear macro-element agree with the results from the high resolution model,but the efficiency and feasibility of the proposed method increase significantly in practical applications.Furthermore,comparisons between some current design codes(AASHTO,JTGD60-2004,and TB10002.1-2005) and the developed dynamic analysis method suggest that these design codes may be improved,at least to consider the effect of dynamic amplification on structural demand.
文摘剪切型断裂是岩土工程中常见的破坏模式,了解剪切破坏机理并准确预测剪切型裂纹的萌生、扩展过程对保障工程结构的安全性与稳定性具有重要意义.文章建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)和非局部宏-微观损伤模型的剪切型裂纹动态开裂模拟方法,定义了基于偏应变概念的物质点对的正伸长量,可作为预测剪切型裂纹扩展行为的动态开裂准则,一点的损伤定义为该点影响域范围内连接的物质键损伤的加权平均值,而物质键的损伤则与基于偏应变概念的物质点对的正伸长量相关联,并引入能量退化函数建立结构域几何拓扑损伤与能量损失之间的关系,将拓扑损伤与应力应变联系起来,通过能量退化函数修正了SBFEM的刚度系数矩阵,得到了子域在损伤状态下的刚度矩阵,推导了考虑结构损伤的SBFEM动力控制方程,采用Newmark隐式算法对控制方程进行时间离散.最后,通过3个典型算例验证了建议的模型可较好地模拟剪切型断裂问题,能够很好地捕捉剪切型裂纹的扩展路径,并得到较为准确的载荷-位移曲线.
文摘论文建立了基于比例边界有限元法(scaled boundary finite element methods,SBFEM)框架的非局部宏微观损伤模型,考虑材料细观物理参数的空间变异性,探讨了材料参数的空间变异性对结构开裂过程的影响。结果表明:考虑材料参数空间变异性后,裂纹扩展路径具有不确定性,建议的模型能够很好地反应材料内在的随机性;随着结构受力情况的复杂化和结构本体缺陷的增多,裂纹开裂模式的变异性也会增大。自相关长度和参数变异系数对结构开裂分析结果有重要影响。
文摘Atomic absorption and plasma arc spectroscopy were used to determine the contents of Ca,Mn,Cu,Ni,Co,Pb,Zn,Fe,Mg,Hg,Mo,Cr,totally 12 macro and trace elements in yellow,white and black pearls.The results showed that all the three kinds of pearls contained Ca of more than 3×104 mg/100g.The contents of Mn,Cu,Fe,Mg were above 1mg/100g.Ni,Co,Pb,Mo,Cr,Zn had less contents in the pearls,and Hg had the least.It was also showed that Mn,Cu,Pb,Zn,Mg,Co and Cr contents in different colorpearls varied greatly.