Constructing multispecies submerged vegetation systems and maintaining stable seasonal succession is crucial for restoring shallow eutrophic lakes.However,little is known about the interactions between successional an...Constructing multispecies submerged vegetation systems and maintaining stable seasonal succession is crucial for restoring shallow eutrophic lakes.However,little is known about the interactions between successional and existing species of different growth forms,particularly under the low light and high nutrient conditions of eutrophic lakes.We measured the functional traits of mature Vallisneria natans(Lour.)Hara plants and Potamogeton crispus L.shoots in monoculture and mosaic patterns under different light and nutrient conditions.The effect of light on functional traits of the submerged macrophyte species was more significant than that of nutrients,but the reverse was true for P.crispus biomass allocation.Moreover,interspecific interactions affected only the submerged macrophytes under the low light condition and varied with species.Specifically,the interaction of P.crispus to V.natans was biased towards competition,while the interaction of V.natans to P.crispus was converted from facilitation to competition by eutrophication,particularly in the homogenous mosaic growth pattern.This study demonstrates that sufficient light is a prerequisite and patch planting is an effective means to form a multispecies submerged vegetation system.In addition,we emphasize that the coexistence of eutrophication and low light will likely result in a competition between submerged macrophytes thus simplifying the vegetation,even if their growth forms and growing seasons are different.These findings help explain the collapse of multispecies submerged vegetation and guide the restoration of aquatic plants in eutrophic lakes.展开更多
Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes i...Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.展开更多
Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We inv...Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We investigated the diversity and composition of epiphytic bacteria from two common submerged macrophytes: Vallisneria natans and Hydrilla verticillata in Taihu Lake, Jiangsu, China, using methods of terminal restriction fragment length polymorphisms (T-RFLP) and clone library analyses targeted at bacterial 16S rRNA genes. The results show that: (1) the libraries of the two waterweeds contain wide phylogenetic distribution of bacteria, and that the sequences of the two libraries can be separated into 93 OTUs (at 97% similar value); (2) Betaproteobacteria, including Burkholderiales, was the most abundant bacterial group on both plants. Cyanobacteria and Gammaproteobacteria were the second largest groups on V. natans and H. verticillata, respectively. Both clone libraries included some sequences related to those of methanotrophs and nitrogen-fixing bacteria; (3) Cluster analysis of the T-RFLP profiles showed two distinct clusters corresponding to the two plant populations. Both ANOSIM of the T-RFLP data and Libshuff analysis of the two clone libraries indicated a significant difference in epiphytic bacterial communities between the two plants. Therefore, the epiphytic bacterial communities on submerged macrophytes appear to be diverse and host-specific, which may aid in understanding the ecological functions of submerged macrophytes in general.展开更多
In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were ...In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were investigated. Sinking rates of apexes and mid-stems reached 34.8% and 4.4% at the 6 th day and 91.1% and 66.7% at the 22 nd day for M. spicatum, 57.8% and 55.6% at the 6 th day and 100% and 97.8% at the 22 nd day for H. vertieillata, 18.9% and 86.7% at the 6 th day and 95.6% and 100% at the 22 nd day for C. demersum, respectively. Most sunken fragments established themselves successfully with significant growth. Total shoot length ofplantlets developed from apexes and mid-stems increased by 399% and 61% for M. spicatum, 593% and 256% for H. vertieillata and 114% and 104% for C. demersum, respectively. The results showed that it was feasible to establish submersed macrophytes via sinking and colonization of shoot fragments clipped off manually.展开更多
Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phy...Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes.We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake,which was previously fully covered with submerged macrophytes but currently harbors both ecological states.We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes.Although species richness,estimated as the number of operational taxonomic units and phylogenetic diversity(PD),was higher in the phytoplankton dominated ecosystem after this shift,the dissimilarity of bacterioplankton community across space decreased.This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem.Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches,particularly in the macrophyte regime.The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.展开更多
In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concent...In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.展开更多
Three species of aquatic plants (Scirpus validus, Phragmites australis and Acorus calamus) were used as experimental materials to study their capacity to purify contaminated water and their effects on water pH and dis...Three species of aquatic plants (Scirpus validus, Phragmites australis and Acorus calamus) were used as experimental materials to study their capacity to purify contaminated water and their effects on water pH and dissolved oxygen (DO). The water was contaminated with different concentrations of nitrate (5 mg/L, 15 mg/L and 25 mg/L). The results indicated that the concentration of nitrate, species of aquatic plant and their interaction significantly impacted denitrification (P = 0.00). Under the same concentrations, the three species of aquatic plants provided varying degrees of purification. Acorus calamus provided effective purification under all three concentrations of nitrate wastewater, with removal percentages of 87.73%, 83.80% and 86.72% for nitrate concentrations of 5 mg/L, 15 mg/L and 25 mg/L, respectively. In terms of the purification ability by unit fresh weight, Acorus calamus exhibited the worst purification capacity, whereas the capacities of Scirpus validus and Phragmites australis were higher. The purification capacity of Scirpus validus for the three concentrations was as follows: 0.08 mg/(L·g FW), 0.29 mg/(L·g FW), and 0.51 mg/(L·g FW). The capacity of Phragmites australis was 0.07 mg/(L·g FW), 0.25 mg/(L·g FW), and 0.53 mg/(L·g FW). The capacity of Acorus calamus was 0.04 mg/(L·g FW), 0.12 mg/(L·g FW), and 0.21 mg/(L·g FW). Under increased concentrations of nitrate, the three species of aquatic plants exhibited various degrees of increased purification capacity. Under the different concentrations of nitrate, the three species exhibited the same trends with respect to water pH and DO, increasing first and then falling. The pH remained at approximately 7.5, and the DO fell to 4.0 mg/L. A comprehensive analysis reveals that Acorus calamus provides excellent nitrate purification, although by unit fresh weight, both Scirpus validus and Phragmites australis provide superior purification capacity.展开更多
Antioxidant systems are vital in life activities of macrophytes. Species with diff erent life forms need to cope with distinct environments by modifying physiological characters, especially antioxidant systems. In ord...Antioxidant systems are vital in life activities of macrophytes. Species with diff erent life forms need to cope with distinct environments by modifying physiological characters, especially antioxidant systems. In order to find diff erences among life forms and consequence of lake eutrophication, we studied three antioxidant enzymes activity (superoxide dismutase (SOD), ascorbate oxidase (APX) and catalase (CAT)) and total soluble phenolics (TP) content in leaves of 26 macrophyte species in September 2013 in Lake Erhai, China. We found that antioxidation varied accordingly with life forms. The activities of SOD and APX in emergent macrophytes (EM) and floating-leaved macrophytes (FM) were much lower than those of submerged macrophytes (SM). On the contrary, TP content was much higher in EM and FM species. There was a negative correlation between TP and antioxidant enzyme activities (CAT and APX). The results suggested that EM and FM species rely on phenolics might to adapt to adverse environments (higher herbivores predation pressure and UV radiation intensity), while SM species more rely on antioxidant enzymes possibly due to lower demand for antioxidation and/or lack of light and inorganic C availability for phenolics synthesis. We also found FM species represent highest fitness in term of antioxidant system, which would lead to overgrowth of FM species and littoral zone bogginess during lake eutrophication. Finally, it is necessary to carry out the verification experiment under the control condition in the later stage, especially for the dominant ones in eutrophic lakes, to understand the exact adaptive mechanisms of them.展开更多
Using ion beam biotechnology in combination with soil-less plant cultivation on artificial substratum (floating beds), the experiments were conducted with Ipomoea aquatica Forsk. Plants were attached to floating-beds ...Using ion beam biotechnology in combination with soil-less plant cultivation on artificial substratum (floating beds), the experiments were conducted with Ipomoea aquatica Forsk. Plants were attached to floating-beds which were placed on the surface of artificially nutrient-enriched tank water, in order to study the purification and remediation efficiency of ion beam-treated I. aquatica cultivars. The results show that N + ion beams with 25keV energy and dosages of 0, 2.6, 3.9, 5.2, 6.5, 7.8, 9.1×10 13N +(ions)/cm 2 affected I. aquatica dry seeds differently, with the dose of 3.9×10 13N + (ions)/cm 2 improving effectively the performance as expressed by various biological indices. After ion beam application, I. aquatica cultivars grew well in nutrient-enriched water bodies, increasing the growth of leaves and stem, number of leaves, length and area of roots, plant height, and weight more remarkably than observed in the control. The net removing rates of TN, TP were as high as 75% and 82%, respectively. Especially under the dose of 3.9×10 13N +(ions)/cm 2, the net removing rates of TN, TP were highest, for 77% and 85%, respectively. It was proved that ion beam application improves phytoremediation and may be used to purify nutrient rich water bodies.展开更多
Investigations in 1991 to 1993 showed that a perennial submerged plant, Potamogeton maackianus A.Benn., which always dominates the submerged vegetation in the shallow lakes in the middle and lower basins of the Changj...Investigations in 1991 to 1993 showed that a perennial submerged plant, Potamogeton maackianus A.Benn., which always dominates the submerged vegetation in the shallow lakes in the middle and lower basins of the Changjiang River, had been extinct from Donghu Lake of Wuhan, and that some other submerged plants sensitive to water contamination had also dissappeared or declined in the lake. The r-selected species, Najas marina L., Myriophyllum spicatum L. and Vallisneria sp. had superseded the K-selected one, P. maackianus, to co-dominate the submerged vegetation. Several hypereutrophic or eutrophic subregions had switched from macrophyte dominance to phytoplankton dominance, while the shrinkage of macrophytes and the deterioration of water quality had also become more and more severe in the other subregions. The emergent macrophytes were poorly developed and the share of leaf-floating plants hed increased in the lake. It was found that the existing vegetation fluctuated drastically from year to year. Macrophyte restoration experiments carried out in large enclosures at 3 subregions of different trophic state, suggested that the aquatic vegetation of less polluted sublakes,such as Niuchao, Tanglin and Houhu Lakes, could recover spontaneously after stocking of herbivorous fish stopped, that K-selected plants should be introduced into these sublakes to enhance the stability of aquatic vegetation,that a prerequisite for the recovery of macrophytes in the severely polluted basins is the reduction of external and internal nutrient loadingr coupled with feasible management measures; and that r-selected submerged species should be used as pioneer plants for the macrophyte recovery.The recently introduced exotic submerged plant, Elodea canadensis,transplanted into the Houhu Enclosure could survive but failed to surive summer in the enclosures located in the hypereutrophic Shuiguohu Bay.展开更多
Macrophytes play critical ecological role in inland water bodies, especially in shallow systems. Water hyacinth (Eichhornia crassipes) is an invasive plant species introduced to Ethiopian water bodies around the mid 2...Macrophytes play critical ecological role in inland water bodies, especially in shallow systems. Water hyacinth (Eichhornia crassipes) is an invasive plant species introduced to Ethiopian water bodies around the mid 20th century with recently exacerbated devastating ecological and economic consequences. Here we report the impact of the invasive plant species on macrophyte species assemblage and biodiversity in Lake Abaya, southwestern Ethiopia. We compared four sites in Lake Abaya, two hyacinth infested and two non-infested, each site consisting of 15 plots. Our results showed that water hyacinth affects the macrophyte community composition, abundance and diversity negatively. Even though some macrophyte species from the Poaceae and Cyperaceae families appear to coexist with the alien plant, the invasive species has reduced macrophyte abundance and diversity at the infested sites, and in some cases changed the community to nearly monotypic flora. Our data affirm that water hyacinth has the potential to alter macrophyte composition, abundance and diversity in the wider Ethiopian aquatic ecosystems. A broad & closer, systematic and comprehensive look at the short and long term consequences of its expanding invasion within the framework of specific local environmental, ecological and societal conditions is long-overdue.展开更多
A concentration-dependent decrease in biomass, protein, RNA, DNA, and nutrient (NO3- and PO43-) uptake of Lemna minor and Azolla pinnata by Cr, Ni, and Zn was detected. Cr was found to exert maximum toxicity followed ...A concentration-dependent decrease in biomass, protein, RNA, DNA, and nutrient (NO3- and PO43-) uptake of Lemna minor and Azolla pinnata by Cr, Ni, and Zn was detected. Cr was found to exert maximum toxicity followed by Ni and Zn. Metal uptake was dependent on time and concentration of metal in the external rnedium. Both the macrophytes, however, showed preference for Zn followed by Ni and Cr. The uptake kinetics also revealed a low Vmax and high Km for Cr. L. minor was more effcient in accumulating Zn and Cr than A. pinnata in Ni. Compared to immobilized algae and bacterial capsules the test macrophytes showed a greater efficiency for metal removal展开更多
In this study, we estimated the growth area of aquatic macrophytes that have expanded spontaneously in Lake Shinji, located in eastern Shimane Prefecture, Japan, using Terra satellite Advanced Spaceborne Thermal Emiss...In this study, we estimated the growth area of aquatic macrophytes that have expanded spontaneously in Lake Shinji, located in eastern Shimane Prefecture, Japan, using Terra satellite Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Visible and near infrared ASTER data from April, August, and September 2012 were used. The water depth at which ASTER can detect submersed aquatic macrophytes using in situ spectral reflectance of aquatic macrophytes and a bio-optical model was also examined. As a result, when the threshold value of a normalized difference vegetation index (NDVI) was set to 0, only aquatic macrophytes up to a depth of approximately 10 cm could be detected. The growth area of aquatic macrophytes detected by NDVI from ASTER data was in relatively good agreement with the growth area as observed by aerial photography.展开更多
Danube Delta--a unique, young and continuing growing region, is a favorable place for developing a unique flora and fauna with many rare and protected species in Europe. Even though the terrestrial environment is pres...Danube Delta--a unique, young and continuing growing region, is a favorable place for developing a unique flora and fauna with many rare and protected species in Europe. Even though the terrestrial environment is present in the area, the predominance of the aquatic environment led to the existence of a particular macrophytic flora. At the contact point of the sea-water and freshwater, physical, chemical and biological processes occur. As a consequence, researchers consider these coastal waters special ecosystem, in which Musura bay is the most representative one. The purpose of this paper is to contribute to the study of aquatic submerged and floating macrophytes. The present study took place over two years (2013-2014). In each year, a number of expeditions were made in different seasons in order to observe the diverse flora and flora associations. This due to seasonal variation in water quality, and might be a significantly seasonality of the vegetation also. The importance of the studies regarding flora of the Danube Delta, consist in the fact that the plants in this area are of social and economical importance, but also very important for environmental conservation.展开更多
Phytoremediation is a cheap and environmentally friendly technique in which green plants in situ are used to clean the soil, sediments and water of heavy metals. This study investigated the phytoremediation potential ...Phytoremediation is a cheap and environmentally friendly technique in which green plants in situ are used to clean the soil, sediments and water of heavy metals. This study investigated the phytoremediation potential of six naturally occurring macrophytes from Nange (a stream in Buea municipality where cars have been driven into and washed for over 20 years). Plant samples were collected before and after car wash, then analysed for copper, zinc, lead and cadmium accumulation. There was an increase in concentration of all the four heavy metals in water after carwash point, with Zn having the highest concentration (0.27 mg/L). Mean concentration of the heavy metals in the water showed that Zn and Pb had the highest concentrations (0.24 mg/L each) while the least concentration was obtained in Cu (0.12 mg/kg). Heavy metal concentrations in the sediments were higher after car wash point than before. Cadmium had the highest concentration (5.58 mg/kg) while Cu had the least (0.75 mg/kg). <em>Ludwigia peruviana</em> had the highest BAFs for all the heavy metals (22.95 for Cu, 33.41 for Zn, 21.79 for Pb and 7.85 for Cd). Species with the leasts were: <em>Anubias barteri</em> for Cu (7.16), <em>Polygonum persicaria</em> for Zn (14.28), <em>Rorippa nasturtium-aquaticum</em> for Pb (11.60) and <em>Vallisneria spiralis</em> for Cd (1.98). <em>L. peruviana</em> had the highest BAC values (Cu = 10.11, Zn = 14.73, Pb = 11.39, Cd = 3.85) and BCF values (Cu = 12.84, Zn = 18.67, Pb = 10.40, Cd = 4.00). <em>A. barteri</em> had the highest TF (Cu = 1.49, Zn = 1.27, Cd = 1.99) except for Pb where both <em>A. barteri </em>and <em>L. peruviana</em> each had a TF of 1.10. While all the six plants were found to be good accumulators of the heavy metals, <em>L. peruviana</em> showed remarkable efficiency indicating that the species is a good candidate for cleaning such environments.展开更多
Phragmites australis, Potamogeton pectinatus, Potamogeton perfoliatus and Ceratophyllum demersum were selected to study concentrations of PAHs in lotic ecosystems. Six sampling sites were selected along Al-Hilla River...Phragmites australis, Potamogeton pectinatus, Potamogeton perfoliatus and Ceratophyllum demersum were selected to study concentrations of PAHs in lotic ecosystems. Six sampling sites were selected along Al-Hilla River and sampling was conducted in 2010 and 2011. Sixteen PAHs listed as priority pollutants were detected in the samples collected, including Naphthalene (Nap), Acenaphthylene (Acpy), Acenaphthene (Acp), Fluorene (Flu), Phenanthrene (Phen), Anthracene (Ant), Fluoranthene (Flur), Pyrene (Py), Benzo (a) Anthracene (B(a)A), Chrysene (Chry), Benzo (b) Fluoranthene (B(b)F), Benzo (k) Fluoranthene (B(k)F), Benzo (a) Pyrene (B(a)P), Dibenzo (a, h) Anthracene (D(b)A), Benzo (ghi) Perylene (B(ghi)P) and Indeno (1,2,3-cd) Pyrene (Ind). The results of the study illustrate that the PAH concentration in macrophytes varies among their species. These variances were as follows: P. australis 0.425 to 299.424 μg/g dry weight (Dw) for B(ghi)P and B(b)F, respectively;P. perfoliatus 0.354 to 235.84 μg/g Dw for B(b)F and B(ghi)P, respectively;C. demersum 0.996 to 162.942 μg/g Dw for Ant and B(ghi)P, respectively;and P. pectinatus 0.383 to 99.87 μg/g Dw for Ant and Nap, respectively. The accumulation potential of PAHs was also investigated by calculating the Bioconcentration Factor (BCF) and Bio-sediment Accumulation Factor (BSAF). The ranges of BCF ratios were 0.05 to 5334.5, 0.08 to 1602.5, 0.01 to 536.6, 0.16 to 1882 in P. australis, P. perfoliatus, P. pectinatus and C. demersum, respectively. The range of BSAF ratios were 3.14 to 1041.6 and 1.5 to 2920.8 in P. australis and P. perfoliatus, respectively.展开更多
A study to assess the impact of mine effluents on water quality and macrophyte plant communities in the Kifubwa stream in Solwezi, Zambia was carried out in December 2015. The macrophytes species and water samples wer...A study to assess the impact of mine effluents on water quality and macrophyte plant communities in the Kifubwa stream in Solwezi, Zambia was carried out in December 2015. The macrophytes species and water samples were collected from ten (10) selected sampling sites along the river. The initial sampling site was set at the point of pollution (effluents) entrance into the river. The other 9 sampling units of 30 m × 30 m were spaced at a uniform interval of 150 m throughout the 1.5 km section of the river sampled. Macrophytes collected at each sampling site were identified on site to family level using the Zambian Macrophytes Trophic Ranking (ZMTR) protocol developed under the Southern African River Assessment (SAFRASS). The abundance of macrophyte plant communities showed that family Polygonaceae had (27.5%), Cyperaceae, (23.5%), Amaranthaceae (17.6%), Hydrocharitaceae (17.6%) and Osmundaceae (13.8%) respectively. The Shannon-Weiner’s diversity index (H) was used to calculate the macrophyte diversity and the value used in a correlation analysis with potential of hydrogen (pH) and other water quality variable under investigation. The water samples were taken to the laboratory for analysis of water variables, namely, pH, Total Dissolved Solids (TDS), nitrates, phosphates, copper and zinc levels for each site. The pH was significantly (p 0.05) related to TDS, phosphates nitrates and copper pH was not significantly (p > 0.05) related to H and zinc. Calculated means for pH and TDS showed that they were within both the Zambian Drinking Water Standards (ZDWS) and the World Health Organization (WHO) guidelines. Phosphates, nitrates and zinc were all below both water standards. Only copper levels were above both water standards. The mine effluent that is being discharged in the Kifubwa stream does have an impact on the water quality parameters, especially that of copper. This requires regular monitoring of the stream effluents by the authorities that give the permission for the discharge.展开更多
The protection and reasonable use of freshwater is one of the main goals for our future, as water is most important for all organisms on earth including humans. Due to pollution, not only with xenobiotics, but also wi...The protection and reasonable use of freshwater is one of the main goals for our future, as water is most important for all organisms on earth including humans. Due to pollution, not only with xenobiotics, but also with nutrients, the status of our water bodies has changed drastically. Excess nutrient load induces eutrophication processes and, as a result, massive cyanobacterial blooms during the summer times. As cyanobacteria are known to produce several toxic secondary metabolites, the so-called cyanotoxins, exhibiting hepato-, neuro- and cell-toxicity, a potential risk is given, when using this water. There is an urgent need to have a water purification system, which is able to cope with these natural toxins. Using aquatic plants as a Green Liver, the Green Liver System?, was developed, able to remove these natural pollutants. To test the ability of the Green Liver System?, several cyanobacterial toxins including artificial and natural mixtures were tested in a small-scale laboratory system. The results showed that within 7 - 14 days a combination of different aquatic macrophytes was able to remove a given toxin amount (10 μg·L-1) by 100%. The phytoremediation technology behind the Green Liver Systems? uses the simple ability of submerged aquatic plants to uptake, detoxify and store the toxins, without formation and release of further metabolites to the surrounding water.展开更多
From April 1996 to October 1997, regular samplings were carried out monthly at 8 stations in a macrophytic basin of Baoan Lake. From the water samples, 47 genera, 96 species of ciliata were identified. Stations covere...From April 1996 to October 1997, regular samplings were carried out monthly at 8 stations in a macrophytic basin of Baoan Lake. From the water samples, 47 genera, 96 species of ciliata were identified. Stations covered with macrophytes had greater number of ciliate species and higher percentage of sessile species. The mixotroph Strombidium viride bearing algal endosymbionts dominated numerically the whole ciliate communities; most of the other dominants were bactivores. Total ciliate density in Lake Baoan was 6170-34310 ind./L. The seasonal density fluctuations of the dominant species populations were also investigated. Maximum abundances were observed in spring and winter during the decay of macrophytes and minimum densities were observed during the summer months of luxuriant macrophytes growth.展开更多
The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphyti...The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies.In this paper,the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V.natans plants were measured at different initial ammonium concentrations.The results demonstrated that the total chlorophyll and soluble sugar synthesis of V.natans plants decreased by 51.45%and 57.16%,respectively,and malondialdehyde content increased threefold after8 days if the initial NH_(4)^(+)-N concentration was more than 5 mg/L.Algal density,bacterial quantity,dissolved oxygen,and pH increased with high ammonium shocks.The average removal efficiencies of total nitrogen and NH_(4)^(+)-N reached 73.26%and 83.94%,respectively.The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria,Cyanobacteria,and Bacteroidetes increased.The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification(HNAD)bacteria expanded in biofilms.In particular,HNAD bacteria of Flavobacterium,Hydrogenophaga,Acidovorax,Acinetobacter,Pseudomonas,Aeromonas,and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V.natans plants.The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway.Thus,the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.U2240207,41971043,51809178)the Guangxi Key Research and Development Program of China (No.2018AB36010)。
文摘Constructing multispecies submerged vegetation systems and maintaining stable seasonal succession is crucial for restoring shallow eutrophic lakes.However,little is known about the interactions between successional and existing species of different growth forms,particularly under the low light and high nutrient conditions of eutrophic lakes.We measured the functional traits of mature Vallisneria natans(Lour.)Hara plants and Potamogeton crispus L.shoots in monoculture and mosaic patterns under different light and nutrient conditions.The effect of light on functional traits of the submerged macrophyte species was more significant than that of nutrients,but the reverse was true for P.crispus biomass allocation.Moreover,interspecific interactions affected only the submerged macrophytes under the low light condition and varied with species.Specifically,the interaction of P.crispus to V.natans was biased towards competition,while the interaction of V.natans to P.crispus was converted from facilitation to competition by eutrophication,particularly in the homogenous mosaic growth pattern.This study demonstrates that sufficient light is a prerequisite and patch planting is an effective means to form a multispecies submerged vegetation system.In addition,we emphasize that the coexistence of eutrophication and low light will likely result in a competition between submerged macrophytes thus simplifying the vegetation,even if their growth forms and growing seasons are different.These findings help explain the collapse of multispecies submerged vegetation and guide the restoration of aquatic plants in eutrophic lakes.
基金Supported by the National Natural Science Foundation of China(No.41867056)the Guizhou Provincial Key Technology R&D Program(Nos.2021470,2023216)。
文摘Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.
基金Supported by the National Natural Science Foundation of China(No.40730528)the National Basic Research Program of China(973Program)(No.2008CB418104)+2 种基金the Knowledge Innovation Project of Chinese Academy of Sciences(No.KZCX2-YW-JC302)the Jiangsu Provincial Science Foundation(No.BK2009024)the Frontier Foundation of Nanjing Institute of Geography & Limnology,Chinese Academy of Sciences(No.09SL021001)
文摘Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We investigated the diversity and composition of epiphytic bacteria from two common submerged macrophytes: Vallisneria natans and Hydrilla verticillata in Taihu Lake, Jiangsu, China, using methods of terminal restriction fragment length polymorphisms (T-RFLP) and clone library analyses targeted at bacterial 16S rRNA genes. The results show that: (1) the libraries of the two waterweeds contain wide phylogenetic distribution of bacteria, and that the sequences of the two libraries can be separated into 93 OTUs (at 97% similar value); (2) Betaproteobacteria, including Burkholderiales, was the most abundant bacterial group on both plants. Cyanobacteria and Gammaproteobacteria were the second largest groups on V. natans and H. verticillata, respectively. Both clone libraries included some sequences related to those of methanotrophs and nitrogen-fixing bacteria; (3) Cluster analysis of the T-RFLP profiles showed two distinct clusters corresponding to the two plant populations. Both ANOSIM of the T-RFLP data and Libshuff analysis of the two clone libraries indicated a significant difference in epiphytic bacterial communities between the two plants. Therefore, the epiphytic bacterial communities on submerged macrophytes appear to be diverse and host-specific, which may aid in understanding the ecological functions of submerged macrophytes in general.
基金Supported by the National Natural Science Foundation of China (39925007)the High Technology Research and Development Program of China (2002AA60l021)the Knowledge Innovation Program Key Project of Chinese Academy of Sciences (KSCX2-SW-102)
文摘In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were investigated. Sinking rates of apexes and mid-stems reached 34.8% and 4.4% at the 6 th day and 91.1% and 66.7% at the 22 nd day for M. spicatum, 57.8% and 55.6% at the 6 th day and 100% and 97.8% at the 22 nd day for H. vertieillata, 18.9% and 86.7% at the 6 th day and 95.6% and 100% at the 22 nd day for C. demersum, respectively. Most sunken fragments established themselves successfully with significant growth. Total shoot length ofplantlets developed from apexes and mid-stems increased by 399% and 61% for M. spicatum, 593% and 256% for H. vertieillata and 114% and 104% for C. demersum, respectively. The results showed that it was feasible to establish submersed macrophytes via sinking and colonization of shoot fragments clipped off manually.
基金Supported by the National Natural Science Foundation of China(Nos.U1202231,31225004)the National Science Foundation for Young Scientists of China(No.31200383)
文摘Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes.We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake,which was previously fully covered with submerged macrophytes but currently harbors both ecological states.We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes.Although species richness,estimated as the number of operational taxonomic units and phylogenetic diversity(PD),was higher in the phytoplankton dominated ecosystem after this shift,the dissimilarity of bacterioplankton community across space decreased.This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem.Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches,particularly in the macrophyte regime.The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.
基金Supported by the Research Institute for East Asia Environments of Kyushu University and Mitsubishi Corporation in Japan
文摘In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.
文摘Three species of aquatic plants (Scirpus validus, Phragmites australis and Acorus calamus) were used as experimental materials to study their capacity to purify contaminated water and their effects on water pH and dissolved oxygen (DO). The water was contaminated with different concentrations of nitrate (5 mg/L, 15 mg/L and 25 mg/L). The results indicated that the concentration of nitrate, species of aquatic plant and their interaction significantly impacted denitrification (P = 0.00). Under the same concentrations, the three species of aquatic plants provided varying degrees of purification. Acorus calamus provided effective purification under all three concentrations of nitrate wastewater, with removal percentages of 87.73%, 83.80% and 86.72% for nitrate concentrations of 5 mg/L, 15 mg/L and 25 mg/L, respectively. In terms of the purification ability by unit fresh weight, Acorus calamus exhibited the worst purification capacity, whereas the capacities of Scirpus validus and Phragmites australis were higher. The purification capacity of Scirpus validus for the three concentrations was as follows: 0.08 mg/(L·g FW), 0.29 mg/(L·g FW), and 0.51 mg/(L·g FW). The capacity of Phragmites australis was 0.07 mg/(L·g FW), 0.25 mg/(L·g FW), and 0.53 mg/(L·g FW). The capacity of Acorus calamus was 0.04 mg/(L·g FW), 0.12 mg/(L·g FW), and 0.21 mg/(L·g FW). Under increased concentrations of nitrate, the three species of aquatic plants exhibited various degrees of increased purification capacity. Under the different concentrations of nitrate, the three species exhibited the same trends with respect to water pH and DO, increasing first and then falling. The pH remained at approximately 7.5, and the DO fell to 4.0 mg/L. A comprehensive analysis reveals that Acorus calamus provides excellent nitrate purification, although by unit fresh weight, both Scirpus validus and Phragmites australis provide superior purification capacity.
基金Supported by the State Key Laboratory of Freshwater Ecology and Biotechnology(No.2016FBZ08)the Natural Science Foundation of Jiangxi Province(No.2015ZBBF6008)the National Natural Science Foundation of China(No.31200356)
文摘Antioxidant systems are vital in life activities of macrophytes. Species with diff erent life forms need to cope with distinct environments by modifying physiological characters, especially antioxidant systems. In order to find diff erences among life forms and consequence of lake eutrophication, we studied three antioxidant enzymes activity (superoxide dismutase (SOD), ascorbate oxidase (APX) and catalase (CAT)) and total soluble phenolics (TP) content in leaves of 26 macrophyte species in September 2013 in Lake Erhai, China. We found that antioxidation varied accordingly with life forms. The activities of SOD and APX in emergent macrophytes (EM) and floating-leaved macrophytes (FM) were much lower than those of submerged macrophytes (SM). On the contrary, TP content was much higher in EM and FM species. There was a negative correlation between TP and antioxidant enzyme activities (CAT and APX). The results suggested that EM and FM species rely on phenolics might to adapt to adverse environments (higher herbivores predation pressure and UV radiation intensity), while SM species more rely on antioxidant enzymes possibly due to lower demand for antioxidation and/or lack of light and inorganic C availability for phenolics synthesis. We also found FM species represent highest fitness in term of antioxidant system, which would lead to overgrowth of FM species and littoral zone bogginess during lake eutrophication. Finally, it is necessary to carry out the verification experiment under the control condition in the later stage, especially for the dominant ones in eutrophic lakes, to understand the exact adaptive mechanisms of them.
文摘Using ion beam biotechnology in combination with soil-less plant cultivation on artificial substratum (floating beds), the experiments were conducted with Ipomoea aquatica Forsk. Plants were attached to floating-beds which were placed on the surface of artificially nutrient-enriched tank water, in order to study the purification and remediation efficiency of ion beam-treated I. aquatica cultivars. The results show that N + ion beams with 25keV energy and dosages of 0, 2.6, 3.9, 5.2, 6.5, 7.8, 9.1×10 13N +(ions)/cm 2 affected I. aquatica dry seeds differently, with the dose of 3.9×10 13N + (ions)/cm 2 improving effectively the performance as expressed by various biological indices. After ion beam application, I. aquatica cultivars grew well in nutrient-enriched water bodies, increasing the growth of leaves and stem, number of leaves, length and area of roots, plant height, and weight more remarkably than observed in the control. The net removing rates of TN, TP were as high as 75% and 82%, respectively. Especially under the dose of 3.9×10 13N +(ions)/cm 2, the net removing rates of TN, TP were highest, for 77% and 85%, respectively. It was proved that ion beam application improves phytoremediation and may be used to purify nutrient rich water bodies.
文摘Investigations in 1991 to 1993 showed that a perennial submerged plant, Potamogeton maackianus A.Benn., which always dominates the submerged vegetation in the shallow lakes in the middle and lower basins of the Changjiang River, had been extinct from Donghu Lake of Wuhan, and that some other submerged plants sensitive to water contamination had also dissappeared or declined in the lake. The r-selected species, Najas marina L., Myriophyllum spicatum L. and Vallisneria sp. had superseded the K-selected one, P. maackianus, to co-dominate the submerged vegetation. Several hypereutrophic or eutrophic subregions had switched from macrophyte dominance to phytoplankton dominance, while the shrinkage of macrophytes and the deterioration of water quality had also become more and more severe in the other subregions. The emergent macrophytes were poorly developed and the share of leaf-floating plants hed increased in the lake. It was found that the existing vegetation fluctuated drastically from year to year. Macrophyte restoration experiments carried out in large enclosures at 3 subregions of different trophic state, suggested that the aquatic vegetation of less polluted sublakes,such as Niuchao, Tanglin and Houhu Lakes, could recover spontaneously after stocking of herbivorous fish stopped, that K-selected plants should be introduced into these sublakes to enhance the stability of aquatic vegetation,that a prerequisite for the recovery of macrophytes in the severely polluted basins is the reduction of external and internal nutrient loadingr coupled with feasible management measures; and that r-selected submerged species should be used as pioneer plants for the macrophyte recovery.The recently introduced exotic submerged plant, Elodea canadensis,transplanted into the Houhu Enclosure could survive but failed to surive summer in the enclosures located in the hypereutrophic Shuiguohu Bay.
文摘Macrophytes play critical ecological role in inland water bodies, especially in shallow systems. Water hyacinth (Eichhornia crassipes) is an invasive plant species introduced to Ethiopian water bodies around the mid 20th century with recently exacerbated devastating ecological and economic consequences. Here we report the impact of the invasive plant species on macrophyte species assemblage and biodiversity in Lake Abaya, southwestern Ethiopia. We compared four sites in Lake Abaya, two hyacinth infested and two non-infested, each site consisting of 15 plots. Our results showed that water hyacinth affects the macrophyte community composition, abundance and diversity negatively. Even though some macrophyte species from the Poaceae and Cyperaceae families appear to coexist with the alien plant, the invasive species has reduced macrophyte abundance and diversity at the infested sites, and in some cases changed the community to nearly monotypic flora. Our data affirm that water hyacinth has the potential to alter macrophyte composition, abundance and diversity in the wider Ethiopian aquatic ecosystems. A broad & closer, systematic and comprehensive look at the short and long term consequences of its expanding invasion within the framework of specific local environmental, ecological and societal conditions is long-overdue.
文摘A concentration-dependent decrease in biomass, protein, RNA, DNA, and nutrient (NO3- and PO43-) uptake of Lemna minor and Azolla pinnata by Cr, Ni, and Zn was detected. Cr was found to exert maximum toxicity followed by Ni and Zn. Metal uptake was dependent on time and concentration of metal in the external rnedium. Both the macrophytes, however, showed preference for Zn followed by Ni and Cr. The uptake kinetics also revealed a low Vmax and high Km for Cr. L. minor was more effcient in accumulating Zn and Cr than A. pinnata in Ni. Compared to immobilized algae and bacterial capsules the test macrophytes showed a greater efficiency for metal removal
文摘In this study, we estimated the growth area of aquatic macrophytes that have expanded spontaneously in Lake Shinji, located in eastern Shimane Prefecture, Japan, using Terra satellite Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Visible and near infrared ASTER data from April, August, and September 2012 were used. The water depth at which ASTER can detect submersed aquatic macrophytes using in situ spectral reflectance of aquatic macrophytes and a bio-optical model was also examined. As a result, when the threshold value of a normalized difference vegetation index (NDVI) was set to 0, only aquatic macrophytes up to a depth of approximately 10 cm could be detected. The growth area of aquatic macrophytes detected by NDVI from ASTER data was in relatively good agreement with the growth area as observed by aerial photography.
文摘Danube Delta--a unique, young and continuing growing region, is a favorable place for developing a unique flora and fauna with many rare and protected species in Europe. Even though the terrestrial environment is present in the area, the predominance of the aquatic environment led to the existence of a particular macrophytic flora. At the contact point of the sea-water and freshwater, physical, chemical and biological processes occur. As a consequence, researchers consider these coastal waters special ecosystem, in which Musura bay is the most representative one. The purpose of this paper is to contribute to the study of aquatic submerged and floating macrophytes. The present study took place over two years (2013-2014). In each year, a number of expeditions were made in different seasons in order to observe the diverse flora and flora associations. This due to seasonal variation in water quality, and might be a significantly seasonality of the vegetation also. The importance of the studies regarding flora of the Danube Delta, consist in the fact that the plants in this area are of social and economical importance, but also very important for environmental conservation.
文摘Phytoremediation is a cheap and environmentally friendly technique in which green plants in situ are used to clean the soil, sediments and water of heavy metals. This study investigated the phytoremediation potential of six naturally occurring macrophytes from Nange (a stream in Buea municipality where cars have been driven into and washed for over 20 years). Plant samples were collected before and after car wash, then analysed for copper, zinc, lead and cadmium accumulation. There was an increase in concentration of all the four heavy metals in water after carwash point, with Zn having the highest concentration (0.27 mg/L). Mean concentration of the heavy metals in the water showed that Zn and Pb had the highest concentrations (0.24 mg/L each) while the least concentration was obtained in Cu (0.12 mg/kg). Heavy metal concentrations in the sediments were higher after car wash point than before. Cadmium had the highest concentration (5.58 mg/kg) while Cu had the least (0.75 mg/kg). <em>Ludwigia peruviana</em> had the highest BAFs for all the heavy metals (22.95 for Cu, 33.41 for Zn, 21.79 for Pb and 7.85 for Cd). Species with the leasts were: <em>Anubias barteri</em> for Cu (7.16), <em>Polygonum persicaria</em> for Zn (14.28), <em>Rorippa nasturtium-aquaticum</em> for Pb (11.60) and <em>Vallisneria spiralis</em> for Cd (1.98). <em>L. peruviana</em> had the highest BAC values (Cu = 10.11, Zn = 14.73, Pb = 11.39, Cd = 3.85) and BCF values (Cu = 12.84, Zn = 18.67, Pb = 10.40, Cd = 4.00). <em>A. barteri</em> had the highest TF (Cu = 1.49, Zn = 1.27, Cd = 1.99) except for Pb where both <em>A. barteri </em>and <em>L. peruviana</em> each had a TF of 1.10. While all the six plants were found to be good accumulators of the heavy metals, <em>L. peruviana</em> showed remarkable efficiency indicating that the species is a good candidate for cleaning such environments.
文摘Phragmites australis, Potamogeton pectinatus, Potamogeton perfoliatus and Ceratophyllum demersum were selected to study concentrations of PAHs in lotic ecosystems. Six sampling sites were selected along Al-Hilla River and sampling was conducted in 2010 and 2011. Sixteen PAHs listed as priority pollutants were detected in the samples collected, including Naphthalene (Nap), Acenaphthylene (Acpy), Acenaphthene (Acp), Fluorene (Flu), Phenanthrene (Phen), Anthracene (Ant), Fluoranthene (Flur), Pyrene (Py), Benzo (a) Anthracene (B(a)A), Chrysene (Chry), Benzo (b) Fluoranthene (B(b)F), Benzo (k) Fluoranthene (B(k)F), Benzo (a) Pyrene (B(a)P), Dibenzo (a, h) Anthracene (D(b)A), Benzo (ghi) Perylene (B(ghi)P) and Indeno (1,2,3-cd) Pyrene (Ind). The results of the study illustrate that the PAH concentration in macrophytes varies among their species. These variances were as follows: P. australis 0.425 to 299.424 μg/g dry weight (Dw) for B(ghi)P and B(b)F, respectively;P. perfoliatus 0.354 to 235.84 μg/g Dw for B(b)F and B(ghi)P, respectively;C. demersum 0.996 to 162.942 μg/g Dw for Ant and B(ghi)P, respectively;and P. pectinatus 0.383 to 99.87 μg/g Dw for Ant and Nap, respectively. The accumulation potential of PAHs was also investigated by calculating the Bioconcentration Factor (BCF) and Bio-sediment Accumulation Factor (BSAF). The ranges of BCF ratios were 0.05 to 5334.5, 0.08 to 1602.5, 0.01 to 536.6, 0.16 to 1882 in P. australis, P. perfoliatus, P. pectinatus and C. demersum, respectively. The range of BSAF ratios were 3.14 to 1041.6 and 1.5 to 2920.8 in P. australis and P. perfoliatus, respectively.
文摘A study to assess the impact of mine effluents on water quality and macrophyte plant communities in the Kifubwa stream in Solwezi, Zambia was carried out in December 2015. The macrophytes species and water samples were collected from ten (10) selected sampling sites along the river. The initial sampling site was set at the point of pollution (effluents) entrance into the river. The other 9 sampling units of 30 m × 30 m were spaced at a uniform interval of 150 m throughout the 1.5 km section of the river sampled. Macrophytes collected at each sampling site were identified on site to family level using the Zambian Macrophytes Trophic Ranking (ZMTR) protocol developed under the Southern African River Assessment (SAFRASS). The abundance of macrophyte plant communities showed that family Polygonaceae had (27.5%), Cyperaceae, (23.5%), Amaranthaceae (17.6%), Hydrocharitaceae (17.6%) and Osmundaceae (13.8%) respectively. The Shannon-Weiner’s diversity index (H) was used to calculate the macrophyte diversity and the value used in a correlation analysis with potential of hydrogen (pH) and other water quality variable under investigation. The water samples were taken to the laboratory for analysis of water variables, namely, pH, Total Dissolved Solids (TDS), nitrates, phosphates, copper and zinc levels for each site. The pH was significantly (p 0.05) related to TDS, phosphates nitrates and copper pH was not significantly (p > 0.05) related to H and zinc. Calculated means for pH and TDS showed that they were within both the Zambian Drinking Water Standards (ZDWS) and the World Health Organization (WHO) guidelines. Phosphates, nitrates and zinc were all below both water standards. Only copper levels were above both water standards. The mine effluent that is being discharged in the Kifubwa stream does have an impact on the water quality parameters, especially that of copper. This requires regular monitoring of the stream effluents by the authorities that give the permission for the discharge.
基金This research was in part supported by the National Research Foundation of Korea Grant funded by the Korean Government(MISP)(2013,University-Institute Cooperation Program)the Korean Institute of Science and Technology(KIST)Institutional Program(2E24280)The author would like to thank the BMBF for sponsoring the steps from laboratory to real life(BMBF,ChaoHu 02WT0529 and Innovate 01LL0904A).
文摘The protection and reasonable use of freshwater is one of the main goals for our future, as water is most important for all organisms on earth including humans. Due to pollution, not only with xenobiotics, but also with nutrients, the status of our water bodies has changed drastically. Excess nutrient load induces eutrophication processes and, as a result, massive cyanobacterial blooms during the summer times. As cyanobacteria are known to produce several toxic secondary metabolites, the so-called cyanotoxins, exhibiting hepato-, neuro- and cell-toxicity, a potential risk is given, when using this water. There is an urgent need to have a water purification system, which is able to cope with these natural toxins. Using aquatic plants as a Green Liver, the Green Liver System?, was developed, able to remove these natural pollutants. To test the ability of the Green Liver System?, several cyanobacterial toxins including artificial and natural mixtures were tested in a small-scale laboratory system. The results showed that within 7 - 14 days a combination of different aquatic macrophytes was able to remove a given toxin amount (10 μg·L-1) by 100%. The phytoremediation technology behind the Green Liver Systems? uses the simple ability of submerged aquatic plants to uptake, detoxify and store the toxins, without formation and release of further metabolites to the surrounding water.
文摘From April 1996 to October 1997, regular samplings were carried out monthly at 8 stations in a macrophytic basin of Baoan Lake. From the water samples, 47 genera, 96 species of ciliata were identified. Stations covered with macrophytes had greater number of ciliate species and higher percentage of sessile species. The mixotroph Strombidium viride bearing algal endosymbionts dominated numerically the whole ciliate communities; most of the other dominants were bactivores. Total ciliate density in Lake Baoan was 6170-34310 ind./L. The seasonal density fluctuations of the dominant species populations were also investigated. Maximum abundances were observed in spring and winter during the decay of macrophytes and minimum densities were observed during the summer months of luxuriant macrophytes growth.
基金supported by the National Special Program of Water Environment(No.2017ZX07204002)the National Natural Science Foundation of China(No.41871082)。
文摘The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies.In this paper,the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V.natans plants were measured at different initial ammonium concentrations.The results demonstrated that the total chlorophyll and soluble sugar synthesis of V.natans plants decreased by 51.45%and 57.16%,respectively,and malondialdehyde content increased threefold after8 days if the initial NH_(4)^(+)-N concentration was more than 5 mg/L.Algal density,bacterial quantity,dissolved oxygen,and pH increased with high ammonium shocks.The average removal efficiencies of total nitrogen and NH_(4)^(+)-N reached 73.26%and 83.94%,respectively.The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria,Cyanobacteria,and Bacteroidetes increased.The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification(HNAD)bacteria expanded in biofilms.In particular,HNAD bacteria of Flavobacterium,Hydrogenophaga,Acidovorax,Acinetobacter,Pseudomonas,Aeromonas,and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V.natans plants.The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway.Thus,the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.