期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
Effect of seepage-induced erosion on soil macropore structure
1
作者 HUANG Wen-bo HUANG Da +3 位作者 GAO Yi-kang LIU Yang LI Zhao MENG Qiu-jie 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3402-3422,共21页
Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The ... Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The evolution of seepage erosion is investigated with X-ray computed tomography(CT)in this study.The change in macropore structure characteristics during the seepage erosion test is quantified and the influence of seepage erosion on soil deformation is analyzed.Moreover,a pore network model(PNM)is established for the specimens and the evolution of the connected pore size characteristics is assessed.The results show that the macropore structure is significantly affected by seepage erosion,especially in terms of the porosity and pore geometry characteristics.The changes in macropore structure characteristics are most obvious in the lower part of the specimen.The influence of seepage erosion on the pore size distribution(PSD)and soil deformation is heterogeneous and closely dependent on the spatial location of the soil.Moreover,seepage erosion enhances macropore connectivity and has a directional impact on macropore orientation.These findings can provide a reference for the theoretical modeling and numerical simulation of the seepage erosion and improve the understanding of the seepage erosion evolution in engineering practice. 展开更多
关键词 Seepage erosion HETEROGENEITY macropore structure Pore size distribution MICROSTRUCTURE CT scanning
下载PDF
3D macropore carbon-vacancy g-C_(3)N_(4) constructed using polymethylmethacrylate spheres for enhanced photocatalytic H_(2) evolution and CO_(2) reduction 被引量:3
2
作者 Xuewen Wang Qjuchan Li +4 位作者 Lei Gan Xinfei Ji Fayun Chen Xinke Peng Rongbin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期139-146,I0006,共9页
Metal-free g-C_3N_4 is widely used in photocatalytic reactions owing to its suitable band structure.However, it has low specific surface area and insufficient absorbance for visible light, and its photoexcited carrier... Metal-free g-C_3N_4 is widely used in photocatalytic reactions owing to its suitable band structure.However, it has low specific surface area and insufficient absorbance for visible light, and its photoexcited carriers have high recombination rates. In this study, the 3 D macropore C-vacancy g-C_3N_4 was prepared through a facile one-step route. Polymethylmethacrylate is used as a template to increase the surface reaction sites of g-C_3N_4 and extend its visible-light range. Compared to unmodified g-C_3N_4, the H2 production and CO_2 reduction rates of the fabricated g-C_3N_4 significantly improved. The special pore structure significantly improved the light utilization efficiency of g-C_3N_4 and increased the number of surface-active sites. The introduction of C-vacancy extended the absorption band of visible-light and suppressed the carrier recombination. The newly developed synthesis strategy can improve solar energy conversion efficiency and potentially modifies g-C_3N_4. 展开更多
关键词 Carbon nitride macropore PHOTOCATALYTIC H_(2)evolution CO_(2)reduction
下载PDF
Mechanical characteristics of soil-rock mixtures containing macropore structure based on 3D modeling technology 被引量:3
3
作者 LIU Yong SUN Shao-rui +4 位作者 WEI Ji-hong SONG Jing-lei YU Yong-xiang HE Wei ZHANG Ji-xing 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2224-2240,共17页
Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,the... Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction. 展开更多
关键词 Soil rock mixtures macropore structure Mechanical characteristics Discrete element method Shear band
下载PDF
Quantification of 3D macropore networks in forest soils in Touzhai valley(Yunnan,China)using X-ray computed tomography and image analysis 被引量:2
4
作者 ZHANG Jia-ming XU Ze-min +2 位作者 LI Feng HOU Ru-ji REN Zhe 《Journal of Mountain Science》 SCIE CSCD 2017年第3期474-491,共18页
The three dimensional(3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studi... The three dimensional(3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley(Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns(Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils(corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns(250 mm×250 mm×500 mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500 mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studiedforest soils, the main types of macropores were root channels, inter-aggregate voids, macropores without knowing origin, root-soil interface and stone-soil interface. While macropore networks tend to be more complex, larger, deeper and longer. The forest soils have high macroporosity, total macropore wall area density, node density, and large macropore volume, hydraulic radius, mean macropore length, angle, and low tortuosity. The findings suggest that macropore networks in the forest soils have high interconnectivity, vertical continuity, linearity and less vertically oriented. 展开更多
关键词 斜坡稳定性 Touzhai 山谷 降雨渗入 福雷斯特土壤 X 光检查计算了断层摄影术 3D macropore 网络
下载PDF
Infiltration,runoff,and slope stability behaviors of infinite slope with macropores based on an improved Green–Ampt model
5
作者 LI Shanghui WU Guoxiong +2 位作者 QUE Yun JIANG Zhenliang CHENG Gaoyun 《Journal of Mountain Science》 SCIE 2024年第7期2220-2235,共16页
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e... Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ωf),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofωf,the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h. 展开更多
关键词 macropore slope Green–Ampt infiltration model Equivalent wetting front Ponding response time Slope stability
下载PDF
Easily Separated and Recyclable Amino-functionalized Porous SiO2 Beads with 3D Continuous Meso/Macropore Channels 被引量:1
6
作者 WANG Qi YANG Xiaohui +4 位作者 JIANG Yanqiu HUO Hang LI Defeng LIN Kaifeng XU Xianzhu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第1期13-18,共6页
Amino-fimctionalized porous SiO2 beads with a diameter of 200--800 μm(PSB-NH2) have been success- fully synthesized by grafting 3-ammopropyl-triethoxysilane onto meso/macroporous silica beads(PSB), in which the P... Amino-fimctionalized porous SiO2 beads with a diameter of 200--800 μm(PSB-NH2) have been success- fully synthesized by grafting 3-ammopropyl-triethoxysilane onto meso/macroporous silica beads(PSB), in which the PSB was prepared by hydrothermal synthetic method with a porous hard template anion-exchange resin. The as-prepared materials were characterized by means of nitrogen sorption and transmission electron micrographs(TEM), showing the presence of 3D interconnected and continuous large mesopores and macropores inside. The beads were used to catalyze Knoevenagel condensation and proved to be highly active and selective due to the high accessibility of the reactants to the amino groups via the continuous 3D meso/macopores. Notably, such material in bead format facilitates the extremely straightforward separation from reaction solution without any centrifugation or filtration. Moreover, PSB-NH2 proved to be a stable catalyst via leaching experiment test, and can be easily recovered and reused without significant loss of activity in successive catalytic cycles. 展开更多
关键词 Amino group Porous SiO2 bead Continuous 3D meso/macropore Knoevenagel condensation Straightforward separation
原文传递
Photoelectrochemical etching of uniform macropore array on full 5-inch silicon wafers
7
作者 赵志刚 郭金川 +1 位作者 雷耀虎 牛憨笨 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第7期156-160,共5页
We analyze the two main factors causing non-uniformity of the etched macropore array first,and then a novel photoelectrochemical etching setup for large area silicon wafers is described.This etching setup refined typi... We analyze the two main factors causing non-uniformity of the etched macropore array first,and then a novel photoelectrochemical etching setup for large area silicon wafers is described.This etching setup refined typical etching setups by a water cooling system and a shower-head shaped electrolyte circulator.Experimental results showed that the uniform macropore array on full 5-inch n-type silicon wafers could be fabricated by this etching setup.The morphology of the macropore array can be controlled by adjusting the corresponding etching parameters. 展开更多
关键词 photoelectrochemical etching macropore array large area NON-UNIFORMITY current density
原文传递
The effect of macropore size of hydroxyapatite scaffold on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture
8
作者 Feng Shi Dongqin Xiao +3 位作者 Chengdong Zhang Wei Zhi Yumei Liu Jie Weng 《Regenerative Biomaterials》 SCIE EI 2021年第6期80-91,共12页
Previous studies have proved that dynamic culture could facilitate nutrients transport and apply mechanical stimulation to the cells within three-dimensional scaffolds,thus enhancing the differentiation of stem cells ... Previous studies have proved that dynamic culture could facilitate nutrients transport and apply mechanical stimulation to the cells within three-dimensional scaffolds,thus enhancing the differentiation of stem cells towards the osteogenic phenotype.However,the effects of macropore size on osteogenic differentiation of stem cells under dynamic condition are still unclear.Therefore,the objective of this study was to investigate the effects of macropore size of hydroxyapatite(HAp)scaffolds on osteogenic differentiation of bone mesenchymal stem cells under static and perfusion culture conditions.In vitro cell culture results showed that cell proliferation,alkaline phosphate(ALP)activity,mRNA expression of ALP,collagen-I(Col-I),osteocalcin(OCN)and osteopontin(OPN)were enhanced when cultured under perfusion condition in comparison to static culture.Under perfusion culture condition,the ALP activity and the gene expression of ALP,Col-I,OCN and OPN were enhanced with the macropore size decreasing from 1300 to 800 mm.However,with the further decrease in macropore size from 800 to 500 mm,the osteogenic related gene expression and protein secretion were reduced.Computational fluid dynamics analysis showed that the distribution areas of medium-and high-speed flow increased with the decrease in macropore size,accompanied by the increase of the fluid shear stress within the scaffolds.These results confirm the effects of macropore size on fluid flow stimuli and cell differentiation,and also help optimize the macropore size of HAp scaffolds for bone tissue engineering. 展开更多
关键词 macropore size HAp scaffolds perfusion culture osteogenic differentiation
原文传递
Spatial variability of soil hydraulic and physical properties in erosive sloping agricultural fields
9
作者 Deepak Singh Alok Kumar Mishra +3 位作者 Sridhar Patra Sankar Mariappan Nisha Singh Saswat Kumar Kar 《Water Science and Engineering》 EI CAS CSCD 2023年第1期57-66,共10页
It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the ... It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the impact of different tillage practices,including conventional tillage(CT),minimum tillage(MT),and zero tillage(ZT),on soil hydraulic conductivity in a sloping agricultural field under maizeewheat rotation.The results showed that the highest runoff volume(257.40 m3),runoff coefficient(42.84%),and soil loss(11.3 t)were observed when the CT treatment was applied.In contrast,the lowest runoff volume(67.95 m3),runoff coefficient(11.35%),and soil loss(1.05 t)were observed when the ZT treatment was adopted.The soil organic carbon and aggregate mean weight diameter were found to be significantly greater(with mean values of 0.79%and 1.19 mm,respectively)with the ZT treatment than with the CT treatment.With the tilled treatments(CT and MT),substantial changes in the saturated soil hydraulic conductivity(ks),near-saturated soil hydraulic conductivity(k),and water-conducting porosity(ε)were observed between two crop seasons.These three soil parameters were significantly higher in the period after maize harvesting than in the wheat growing period.In contrast,no significant difference in these soil parameters was found when the untilled treatment(ZT)was carried out.With regard to the slope positions,ks,k,andεshowed different behaviors under different treatments.The toe slope position showed significantly lower ks andεvalues than the summit and middle slope positions.Of the evaluated tillage practices,ZT was found to be the most promising means to improve the soil hydro-physical properties and effectively reduce surface runoff and soil erosion. 展开更多
关键词 Hydraulic conductivity macropore Conservation tillage Spatiotemporal variability Soil erosion
下载PDF
Transition metal embedded in nonmetal-doped T-carbon [110]: A superior synergistic trifunctional electrocatalyst for HER, OER and ORR
10
作者 Zhengqin Zhao Jinbo Hao +8 位作者 Baonan Jia Xinhui Zhang Ge Wu Chunling Zhang Long Li Shuli Gao Yirong Ma Yuanzi Li Pengfei Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期79-89,I0004,共12页
The design of efficient and low-cost multifunctional electrocatalysts for hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) is critical for the development of clean en... The design of efficient and low-cost multifunctional electrocatalysts for hydrogen evolution reaction(HER), oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) is critical for the development of clean energy. Two-dimensional(2D) carbon-based nano-materials are becoming more and more popular in heterogeneous catalysis due to their cost-effective and multi-scale tunability as single-atom catalysis(SACs) substrates. In this paper, by using first-principles calculation, we designed and demonstrated a novel macropore T-carbon [110](TC) monolayer as 2D electrocatalyst substrate for HER/OER/ORR, and the synergistic modification of the transition metal and nonmetal atoms(TM-X) were investigated to enhance the multifunctional electrocatalytic performance. We screened out the Co embedded in N-doped TC(Co3@N-TC) from 30 TM@X-TC monolayers as a trifunctional electrocatalysts, which exhibits superior performance for HER/ORR/OER on both thermodynamic and kinetic scales, and with excellent thermal and electrochemical stability. Then, the TC monolayer is naturally macropore with a diameter of 5.36 A and exhibits excellent adsorption capacity for the intermediates and products of the redox reactions. Moreover, we revealed the origin of the electrocatalytic activity using the crystal orbital Hamilton population(COHP) and the molecular orbitals(MOs). The d orbital of Co3@N-TC is significantly hybridized with the p orbital of the intermediates, so that the lone electrons initially occupied in the antibonding state pair up and occupy the downward bonding state, allowing *OH to be appropriately adsorbed onto the TC monolayer. This work not only demonstrates that the TM@X-TC monolayer is a superior synergistic trifunctional electrocatalyst, but also reveals a macropore monolayer material with potential applications in electrocatalysis. 展开更多
关键词 Carbon-based nano-materials macropore Single-atom catalyst Multifunctional electrocatalyst First-principles calculation
下载PDF
Ultrasmall NiS_(2)Nanocrystals Embedded in Ordered Macroporous Graphenic Carbon Matrix for Efficiently Pseudocapacitive Sodium Storage
11
作者 Zhaozhao Liu Jiang Wang +7 位作者 Ran Bi Pinyi Zhao Mengqian Wu Xinyu Liu Likun Yin Chengyang Wang Mingming Chen Kemeng Ji 《Transactions of Tianjin University》 EI CAS 2023年第2期89-100,共12页
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw... Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications. 展开更多
关键词 Sodium-ion battery Sodium-ion hybrid capacitor Three-dimensionally ordered macroporous structure Graphenic carbon NiS_(2)nanocrystals
下载PDF
溶剂萃取法提取蓝莓中花色苷 被引量:9
12
作者 王继萍 柏广新 +3 位作者 李劲然 王叶宝 冷吉燕 秦俊杰 《分析化学》 SCIE EI CAS CSCD 北大核心 2012年第12期1952-1953,共2页
1引言蓝莓(Blueberry),又称越橘、蓝浆果,属杜鹃花科(Ericaceae)越橘属(Vaccinium spp)多年生落叶或常绿灌木。蓝莓果实呈深蓝色,含有丰富的花色苷。花色苷是花色素与糖以糖苷键结合而成的黄酮多酚类化合物,结构性质稳定,花色素... 1引言蓝莓(Blueberry),又称越橘、蓝浆果,属杜鹃花科(Ericaceae)越橘属(Vaccinium spp)多年生落叶或常绿灌木。蓝莓果实呈深蓝色,含有丰富的花色苷。花色苷是花色素与糖以糖苷键结合而成的黄酮多酚类化合物,结构性质稳定,花色素的基本结构为3,5,7-三羟基-2-苯基苯并吡喃,由于苯环中取代基、羟基和甲氧基位置和数量不同, 展开更多
关键词 SOLVENT extraction BLUEBERRY anthocyanins AB-8 MACROPOROUS RESIN
下载PDF
Effect of Manufacturing Parameters of Lightweight Hernia Mesh Material on Its Mechanical Properties 被引量:2
13
作者 徐睿 邹婷 +6 位作者 孙红蕊 邵元祎 陈裕寒 王富军 李彦 杨治力 王璐 《Journal of Donghua University(English Edition)》 EI CAS 2017年第2期243-247,共5页
The traditional synthetic polypropylene(PP) meshes for hernia surgical repair were controversial due to increasing postoperative complications,including chronic pain,infection and shrinkage.These morbidities may be re... The traditional synthetic polypropylene(PP) meshes for hernia surgical repair were controversial due to increasing postoperative complications,including chronic pain,infection and shrinkage.These morbidities may be related to a mismatch of mechanical properties between abdominal wall and the meshes.The aims of this study were to design a large pore,lightweight and anisotropic hernia mesh material and explore the influence of pulling density on mechanical properties of experimental hernia mesh materials.The hernia mesh material included A,B,and C samples knitted by RS4 EL warp knitting machine with 16 E gauge.The results showed that the mechanical properties of hernia mesh materials met the requirement of anisotropy in abdominal wall tissue.With the pulling density increased,bursting strength,uniaxial tensile strength and suture pulling out force tended to increase,while tearing force was no significant difference.Sample C showed superior physical and mechanical properties. 展开更多
关键词 hernia mesh LIGHTWEIGHT macropore mechanical property
下载PDF
A Novel <i>in Vitro</i>Three-Dimensional Macroporous Scaffolds from Bacterial Cellulose for Culture of Breast Cancer Cells 被引量:1
14
作者 Guangyao Xiong Honglin Luo +3 位作者 Feng Gu Jing Zhang Da Hu Yizao Wan 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期316-326,共11页
In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining techn... In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining technique in an attempt to create an in vitro model for the culture of breast cancer cells. The morphology, pore structure, and mechanical performance of the obtained patterned macroporous BC (PM-BC) scaffolds were characterized by scanning electron microscopy (SEM), mercury intrusion porosimeter, and mechanical testing. A human breast cancer cell (MDA-MB-231) line was cultured onto the PM-BC scaffolds to investigate the role of macropores in the control of cancer cell behavior. MTT assay, SEM, and hematoxylin and eosin (H&E) staining were employed to determine cell adhesion, growth, proliferation, and infiltration. The PM-BC scaffolds were found to be able to promote cellular adhesion and proliferation on the scaffolds, and further to allow for cell infiltration into the PM-BC scaffolds. The results demonstrated that BC scaffolds with laser-patterned macropores were promising for the in vitro 3D culture of breast cancer cells. 展开更多
关键词 3D CULTURE SCAFFOLD Bacterial Cellulose Cancer Cell macropore
下载PDF
A model for transient diffusion in bidisperse pore structures
15
作者 Wei Sun Sheng-Li Chen +4 位作者 Ming-Ri Xu Ya-Qian Wei Ting-Ting Fan Bao-Li Ma Jin-Tao Guo 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1455-1470,共16页
A bidisperse model for transient diffusion and adsorption processes in porous materials is presented in this paper.The mathematical model is solved by numerical methods based on finite elements combined with the linea... A bidisperse model for transient diffusion and adsorption processes in porous materials is presented in this paper.The mathematical model is solved by numerical methods based on finite elements combined with the linear driving force approximation.A criterion based on the model to identify the diffusion controlling mechanism(macropore diffusion,micropore diffusion,or both)is proposed.The effects of different adsorption isotherms(linear,Freundlich,or Langmuir)on the concentration profiles and on curves of fractional uptake versus time are investigated.In addition,the influences of model parameters concerning the pore networks on the fractional uptake are studied as well. 展开更多
关键词 Transient diffusion ADSORPTION Bidisperse pores macropore MICROPORE Linear driving force
下载PDF
Prediction of the Slope Solute Loss Based on BP Neural Network
16
作者 Xiaona Zhang Jie Feng +2 位作者 Zhiguo Yu Zhen Hong Xinge Yun 《Computers, Materials & Continua》 SCIE EI 2021年第12期3871-3888,共18页
The existence of soil macropores is a common phenomenon.Due to the existence of soil macropores,the amount of solute loss carried by water is deeply modified,which affects watershed hydrologic response.In this study,a... The existence of soil macropores is a common phenomenon.Due to the existence of soil macropores,the amount of solute loss carried by water is deeply modified,which affects watershed hydrologic response.In this study,a new improved BP(Back Propagation)neural network method,using Levenberg–Marquand training algorithm,was used to analyze the solute loss on slopes taking into account the soil macropores.The rainfall intensity,duration,the slope,the characteristic scale of macropores and the adsorption coefficient of ions,are used as the variables of network input layer.The network middle layer is used as hidden layer,the number of hidden nodes is five,and a tangent transfer function is used as its neurons transfer function.The cumulative solute loss on the slope is used as the variable of network output layer.A linear transfer function is used as its neurons transfer function.Artificial rainfall simulation experiments are conducted in indoor experimental tanks in order to verify this model.The error analysis and the performance comparison between the proposed method and traditional gradient descent method are done.The results show that the convergence rate and the prediction accuracy of the proposed method are obviously higher than that of traditional gradient descent method.In addition,using the experimental data,the influence of soil macropores on slope solute loss has been further confirmed before the simulation. 展开更多
关键词 Solute loss soil macropores improved BP neural network SLOPE
下载PDF
Modelling of the Slope Solute Loss Based on Fuzzy Neural Network Model
17
作者 Xiaona Zhang Jie Feng +1 位作者 Zhen Hong Xiaona Rui 《Computer Systems Science & Engineering》 SCIE EI 2022年第8期677-688,共12页
In regards to soil macropores,the solute loss carried by overland flow is a very complex process.In this study,a fuzzy neural network(FNN)model was used to analyze the solute loss on slopes,taking into account the soi... In regards to soil macropores,the solute loss carried by overland flow is a very complex process.In this study,a fuzzy neural network(FNN)model was used to analyze the solute loss on slopes,taking into account the soil macropores.An artificial rainfall simulation experiment was conducted in indoor experimental tanks,and the verification of the model was based on the results.The characteristic scale of the macropores,the rainfall intensity and duration,the slope and the adsorption coefficient of ions,were chosen as the input variables to the Sugeno FNN model.The cumulative solute loss quantity on the slope was adopted as the output variable of the Sugeno FNN model.There were three membership functions,and the type of membership function was gbellmf(generalized bell membership function).The hybrid learning algorithm,which combines the back propagation algorithm with a least square method,was applied to train and optimize the network parameters,and the optimal network parameters were determined.The simulation results showed that the simulated values were consistent with the measured values. 展开更多
关键词 Slope solute loss soil macropores fuzzy neural network
下载PDF
Adsorption behavior and mechanism of D113 resin for lanthanum 被引量:7
18
作者 SHU Zengnian XIONG Chunhua +2 位作者 SHEN Qiuxian YAO Caiping GU Zhenyu 《Rare Metals》 SCIE EI CAS CSCD 2007年第6期601-606,共6页
The sorption properties of macroporous weak acid resin (D113) for La^3+ ion were studied by chemical analysis and IR spectra. Experimental results indicate that the D113 resin has a good adsorption ability for La^3... The sorption properties of macroporous weak acid resin (D113) for La^3+ ion were studied by chemical analysis and IR spectra. Experimental results indicate that the D113 resin has a good adsorption ability for La^3+ at pH = 6.0 in the HAc-NaAc medium. The statically saturated adsorption capacity is 273.3 mg/g. Separation coefficients of βLa^3+/Ce^3+, βLa^3+/Gd^3+, βLa^3+/Er^3+, and βLa^3+/Y^3+ are 2.29, 3.64, 4.27, and 0.627, respectively. The apparent activation energy of adsorption, Ea is 18.4 kJ/mol, the thermodynamics parameters AH, AS, and AG of sorption are 4.53 kJ/mol, 61.8 J/(mol·K), -13.9 kJ/mol, respectively. The adsorption behavior of D113 for La^3+ obeys the Freundlich isotherm. La^3+adsorbed on resin can be eluted by 2.0 mol/L HCl quantitatively. 展开更多
关键词 ADSORPTION macroporous weak acid resin LANTHANUM MECHANISM KINETICS
下载PDF
Hierarchical Metal-Organic Frameworks with Macroporosity:Synthesis, Achievements,and Challenges 被引量:7
19
作者 Huan VDoan Harina Amer Hamzah +2 位作者 Prasanth Karikkethu Prabhakaran Chiara Petrillo Valeska PTing 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期281-313,共33页
Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interact... Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interactions with bulky molecules are involved,enlarging the pore size of typically microporous MOF adsorbents or MOF catalysts is crucial for enhancing both mass transfer and molecular accessibility.In this review,we examine the range of synthetic strategies which have been reported thus far to prepare hierarchical MOFs or MOF composites with added macroporosity.These fabrication techniques can be either pre-or post-synthetic and include using hard or soft structural template agents,defect formation,routes involving supercritical CO2,and 3D printing.We also discuss potential applications and some of the challenges involved with current techniques,which must be addressed if any of these approaches are to be taken forward for industrial applications. 展开更多
关键词 METAL-ORGANIC frameworks HIERARCHICAL MACROPOROUS COMPOSITES
下载PDF
Binary competitive adsorption of naphthalene compounds onto an aminated hypercrosslinked macroporous polymeric adsorbent 被引量:9
20
作者 LIUFu-qiang CHENJin-long CHENGXiu-mei GEJun-jie LIAi-min ZHANGQuan-xing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期471-475,共5页
An aminated hypercrosslinked macroporous polymeric adsorbent was synthesized and characterized. Adsorption isotherms for 1 amino 2 naphthol 4 sulfonic acid(1, 2, 4 acid) and 2 naphthol obtained from various bin... An aminated hypercrosslinked macroporous polymeric adsorbent was synthesized and characterized. Adsorption isotherms for 1 amino 2 naphthol 4 sulfonic acid(1, 2, 4 acid) and 2 naphthol obtained from various binary adsorption environments can be well fitted by Freundlich equation, which indicated a favorable adsorption process in the studied range. Adsorption for 1, 2, 4 acid was an endothermic process in comparison with that for 2 naphthol of an exothermic process. 2 naphthol molecules put a little influence on the adsorption capacity for 1, 2, 4 acid. However, the adsorption to 1, 2, 4 acid depressed that to 2 naphthol in a large extent for the stronger electrostatic interaction between 1, 2, 4 acid and adsorbent. The predominant mechanism can be contributed to the competition for adsorption sites. And the simultaneous environment was confirmed to be helpful to the selective adsorption towards 1,2,4 acid based on the larger selectivity index. 展开更多
关键词 aminated hypercrosslinked macroporous polymeric adsorbent 1 2 4 acid 2 naphthol competitive adsorption
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部