期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Color tunable upconversion emission in CeO_2:Yb,Er three-dimensional ordered macroporous materials 被引量:1
1
作者 程彦敏 杨正文 +3 位作者 廖佳燕 邱建备 宋志国 杨勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第6期599-603,共5页
The three-dimensional ordered macroporous CeO2:Yb,Er materials were prepared, and the influence of doping concentra- tion of Yb3+ or Er3+ ions on upconversion property was investigated. Green and red upconversion e... The three-dimensional ordered macroporous CeO2:Yb,Er materials were prepared, and the influence of doping concentra- tion of Yb3+ or Er3+ ions on upconversion property was investigated. Green and red upconversion emissions were observed under the excitation of 980 nm at room temperature. It was found that the ratio of red to green upconversion emission intensity increased with increasing of concentration of the Yb3+ or Er3+ ions in the three-dimensional ordered macroporous CeO2:Yb,Er materials. When the concentration of Yb3+ was 10 mol%, pure red upconversion emission was obtained. The varied mechanism of ratio of red to green upconversion emission intensity was discussed with the concentration of Yb3+ or Er3+ ions. 展开更多
关键词 three-dimensional ordered macroporous materials CeO2:Yb Er upconversion emission color tunability rare earths
原文传递
Highly Ordered Macroporous Au and Pd by Colloidal Crystal Templating
2
作者 LingYunHAO WanOuanJIANG +6 位作者 ChunLingZHU XianMingLIU FanQingLI YuRuiZHU WeiChengFAN YuanHU ZuYaoCHEN 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第7期763-766,共4页
The highly ordered macroporous Au and Pd with regular arrays of spherical pores have been synthesized by poly (styrene-co-acrylic) (PSA) colloidal crystal template. The pore size is tuneable in the range of 100-400 nm... The highly ordered macroporous Au and Pd with regular arrays of spherical pores have been synthesized by poly (styrene-co-acrylic) (PSA) colloidal crystal template. The pore size is tuneable in the range of 100-400 nm according to the size of PSA latex. The mechanism is based on the in-situ impregnating and reducing of metal ions in the interspaces of the PSA spheres then removing the template. 展开更多
关键词 macroporous materials chemical synthesis scanning electron microanalyzer.
下载PDF
Three-dimensional ordered macroporous perovskite-type La_(1-x)K_xNiO_3 catalysts with enhanced catalytic activity for soot combustion: the Effect of K-substitution 被引量:8
3
作者 Xuelei Mei Jing Xiong +4 位作者 Yuechang Wei Chujun Wang Qiangqiang Wu Zhen Zhao Jian Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期722-732,共11页
Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission elec... Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray scattering elemental mapping, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and temperature-programmed reduction of H2. Further, their catalytic activity in soot combustion was determined by temperature-programmed oxidation reaction. K substitution into the LaNiO3 lattice led to remarkably improved catalytic activity of this catalyst in soot combustion. Amongst various catalysts, La0.95K0.05NiO3 exhibited the highest activity in soot combustion (with its T50 and CO2 S values being 338 °C and 98.2%, respectively), which is comparable to the catalytic activities of Pt-based catalysts under the condition of poor contact between the soot and the catalyst. K-substitution improves the valence state of Ni and increases the number of oxygen vacancies, thereby leading to increased density of surface-active oxygen species. The active oxygen species play a vital role in catalyzing the elimination of soot. The perovskite-type La1?xKxNiO3 nanocatalysts with 3DOM structure without noble metals have potential for practical applications in the catalytic combustion of diesel soot particles. 展开更多
关键词 Three-dimensional ordered macroporous material LANIO3 Potassium Perovskite Soot combustion
下载PDF
Ordered macroporous boron phosphate crystals as metal-free catalysts for the oxidative dehydrogenation of propane 被引量:8
4
作者 Wen-Duo Lu Xin-Qian Gao +4 位作者 Quan-Gao Wang Wen-Cui Li Zhen-Chao Zhao Dong-Qi Wang An-Hui Lu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1837-1845,共9页
Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally ... Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process. 展开更多
关键词 Ordered macroporous material Metal-free catalyst Boron phosphate Oxidative dehydrogenation PROPANE
下载PDF
Fabrication of ultrafine Pd nanoparticles on 3D ordered macroporous TiO_2 for enhanced catalytic activity during diesel soot combustion 被引量:4
5
作者 Yuechang Wei Qiangqiang Wu +2 位作者 Jing Xiong Jian Liu Zhen Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期606-612,共7页
Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method... Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles. 展开更多
关键词 Ordered macroporous material Pd TiO2 Diesel soot combustion Ultrafine nanoparticle Heterogeneous catalysis
下载PDF
Three-dimensionally ordered macroporous CeO_2/Al_2O_3-supported Au nanoparticle catalysts: Effects of CeO_2 nanolayers on catalytic activity in soot oxidation 被引量:5
6
作者 Baofang Jin Yuechang Wei +5 位作者 Zhen Zhao Jian Liu Yazhao Li Renjie Li Aijun Duan Guiyuan Jiang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1629-1641,共13页
A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These c... A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation. 展开更多
关键词 Three‐dimensionally ordered macroporous material Gold nanoparticle Multilayer support CeO2 nanolayer Soot combustion
下载PDF
MESO-STRUCTURED POLYMERIC HYDROGELS
7
作者 杨振忠 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第2期175-180,共6页
Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polyme... Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fastpH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogelson controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO_2 in the region containing acid groups, which allowedduplicating inorganic colloidal crytals from colloidal crystal hydrogels (or macroporous products from macroporoushydrogels) via one step duplication. 展开更多
关键词 Template synthesis Colloidal crystals (opal) Ordered macroporous materials (inverse opal) Ordered hydrogels Ordered inorganic materials
下载PDF
Effects of Au-Ce strong interactions on catalytic activity of Au/CeO_2/3DOM Al_2O_3 catalyst for soot combustion under loose contact conditions 被引量:4
8
作者 靳保芳 韦岳长 +3 位作者 赵震 刘坚 姜桂元 段爱军 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期923-933,共11页
Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray dif... Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively. 展开更多
关键词 Three-dimensionally ordered macroporous material Gold nanoparticle CERIA Soot combustion Synergistic effect
下载PDF
Facile Fabrication of Hierarchically Porous Carbonaceous Monoliths with Ordered Mesostructure via an Organic Organic Self-Assembly 被引量:12
9
作者 Chunfeng Xue Bo Tu Dongyuan Zhao 《Nano Research》 SCIE EI CSCD 2009年第3期242-253,共12页
A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic organic self-assembly at the interface of an organic scaffold such as polyurethane(PU)fo... A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic organic self-assembly at the interface of an organic scaffold such as polyurethane(PU)foam.Hierarchically porous carbonaceous monoliths with cubic(Im m)or hexagonal(p6mm)mesostructure were prepared through evaporation induced self-assembly of the mesostructure on the three-dimensional(3-D)interconnecting struts of the PU foam scaffold.The preparation was carried out by using phenol/formaldehyde resol as a carbon precursor,triblock copolymer F127 as a template for the mesostructure and PU foam as a sacrificial monolithic scaffold.Their hierarchical pore system was macroscopically fabricated with cable-like mesostructured carbonaceous struts.The carbonaceous monoliths exhibit macropores of diameter 100450μm,adjustable uniform mesopores(3.87.5 nm),high surface areas(200870 m2/g),and large pore volumes(0.170.58)cm3/g.Compared with the corresponding evaporation induced self-assembly(EISA)process on a planar substrate,this facile process is a time-saving,labor-saving,space-saving,and highly effi cient pathway for mass production of ordered mesoporous materials. 展开更多
关键词 SELF-ASSEMBLY synthesis mesoporous materials CARBONACEOUS monolith TEMPLATING macroporous materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部