The Zaibian mafic-ultramafic rock is located in the transitional zone of the Yangtze craton and south China fold system,where is the southwest of Jiangnan orogenic belt(Zeng et al.,2003;Wang et al.,in press).
The East Kunlun located in the northern margin of the Qinghai-Xizang(Tibet)Plateau,is a composite orogenic belt which has underwent multi-stages tectonic evolution(e.g.Wang and Chen,1987;Jiang et al.,1992;Yang et al.,...The East Kunlun located in the northern margin of the Qinghai-Xizang(Tibet)Plateau,is a composite orogenic belt which has underwent multi-stages tectonic evolution(e.g.Wang and Chen,1987;Jiang et al.,1992;Yang et al.,1996,2009).The East Kunlun orogenic belt(EKOB)is bounded by Altyn Tagh Fault in the west and Wenquan Fault in the east,bounded by the south margin of Qaidam展开更多
The platinum group elements (PGE) in the mafic ultramafic suite in the Xinjie layered intrusion and associated basalts and syenites were analyzed using neutron activation techniques after fire assay preconcentration. ...The platinum group elements (PGE) in the mafic ultramafic suite in the Xinjie layered intrusion and associated basalts and syenites were analyzed using neutron activation techniques after fire assay preconcentration. On this basis, the geochemistry of the platinum group during the magmatic stage is discussed. With respect to PGE distribution, the Xinjie layered intrusion is similar to the Bushveld ferruginous ultramafic series and is distinct from komatiite and Alpine type peridotite. It is also similar to the Emeishan basalt in PGE characteristics, implying that the original magmas of them may be of the same type.展开更多
The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb content...The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first ob-served that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical char-acters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional ma-fic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.展开更多
The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not y...The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not yet clearly constrained, let along their economic significance. The compositions of platinum group elements(PGE) in the Fanjingshan mafic-ultramafic rocks can provide particular insight into the generation and evolution of the mantle-derived magma and thus the potential of Cu-Ni-PGE sulphide mineralization. The Fanjingshan mafic-ultramafic rocks have relatively high Pd-subgroup PGE(PPGE) relative to Ir-subgroup PGE(IPGE) in the primitive mantle-normalized diagrams. Meanwhile, the Fanjingshan mafic-ultramafic rocks have low Pd/Ir(11–28) ratios, implying relatively low degree of partial melting in the mantle. Low Cu/Pd ratios(545–5 216) and high Cu/Zr ratios(0.4–5.8 with the majority greater than 1) of Fanjingshan ultramafic rocks indicate that the S-undersaturated parental magma with relatively high PGE was formed. Although the Fanjingshan mafic rocks have remarkably higher Cu/Pd ratios(8 913–107 016) likely resulting from sulphide segregation, the degree of sulphide removal is insignificant. Fractionation of olivine rather than chromite and platinum group minerals or alloys governed the fractionation of PGE and produced depletion of IPGE(Os, Ir and Ru) relative to PPGE(Rh, Pt and Pd), as supported by the positive correlation between Pd/Ir and V, Y and REE. Collectively, original S-undersaturated magma and insignificant crustal contamination during magma ascent and emplacement result in the separation of immiscible sulphide impossible and thus impede the formation of economic CuNi-PGE sulphide mineralization within the Fanjingshan mafic-ultramafic rocks.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
The Neoproterozoic Gaojiacun intrusive complex (GIC) is composed of one big intrusion (ca. 9 × 7.5 km) and numerous satellite intrusions, emplaced in the low-grade schists of the Neoproterozoic Yanbian Group....The Neoproterozoic Gaojiacun intrusive complex (GIC) is composed of one big intrusion (ca. 9 × 7.5 km) and numerous satellite intrusions, emplaced in the low-grade schists of the Neoproterozoic Yanbian Group. The main intrusion is concentrically zoned, with peridotite bodies + leucogabbroids in its core (inner zone) and the sequence: olivine hornblende gabbronorite - porphyric pyroxene hornblende gabbronorite (transitional zone) - pyroxene hornblende gabbronorite + hornblende gabbro + diorite (outer zone), towards the margins. The satellite intrusions are composed either of a single rock type (peridotite, gabbro, diorite or granite) or of different rock types (peridotite + diorite + granite). Upper crustal contamination is evidenced by the occurrence of numerous metamorphic enclaves, migmatites and mixed rocks in the outer zone of the main intrusion and in the satellite intrusions. Hornblende (often oikocrystic) is present in all mafic and ultramafic rocks. Cu-Ni (-PGE) deposits occur in several satellite intrusions, hosted in peridotite. The geochemical and mineralogical features of GIC support the presence of a subduction zone at the western edge of the Yangtze Craton. A feederrelated genesis of the satellite intrusions is inferred.展开更多
The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion ...The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.展开更多
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of Chi...The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The εNd(t) values in the rock units vary from +6.70 to +9.64, and initial87Sr/86Sr ratios range between 0.7035 and0.7042. Initial206Pb/204Pb,207Pb/204Pb and208Pb/204Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)PMvalues between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)PMratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.展开更多
Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanw...Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.展开更多
The Eastern Kunlun Orogenic Belt(EKOB)has a complex geological structure and diverse magmatic activities,which are closely related to the Qaidam Basin and the Tethys tectonic evolution.There are at least 3 stages mafi...The Eastern Kunlun Orogenic Belt(EKOB)has a complex geological structure and diverse magmatic activities,which are closely related to the Qaidam Basin and the Tethys tectonic evolution.There are at least 3 stages mafic-ultramafic rocks occurred in the Early Paleozoic in EKOB.The first stage is the Later-Silurian to Early Devonian,represented by the giant Xiarihamu super large magmatic Cu-Ni deposit,containing about 1.18 million metric tons(Mt)of nickel with average grades of 0.65%Ni,and its age of ore-forming pyroxene peridotite is 411 Ma;The second stage is the Early Carboniferous,represented by the large Shitoukengde magmatic Cu-Ni sulfide deposit,and its ore-forming age of the olivine websterite is 334 Ma;The third stage of mafic-ultramafic rocks occurred mainly during the Middle-Late Triassic,represented by Xiaojianshan,Lalinggaoli,and Kaimuqi complexes,and no economical ore bodies have been found in this period.The authors summarized the difference between the ore-bearing and the nonmineralized mafic-ultramafic rocks in the EKOB.The olivine of the ore-bearing complexes contains higher MgO and SiO2 content but lower FeO and CaO contents,and the clinopyroxene of ore-bearing complexes contains lower FeO and CaO contents.Crustal sulfur contamination is key to the formation of the giant Xiarihamu Ni deposit,and crustal sulfur contamination degree of the giant magmatic Ni deposit is higher than that of large Ni deposit.The above indicators could guide the exploration and evaluation of similar deposits in the EKOB.展开更多
The Xingdi mafic-ultramafic intrusions occur in the northeastern margin of the Tarim craton. The Xingdi No. 3 intrusion is the smallest of four intrusions, with an exposed area of 1.7 km2, and the zircon U-Pb age of t...The Xingdi mafic-ultramafic intrusions occur in the northeastern margin of the Tarim craton. The Xingdi No. 3 intrusion is the smallest of four intrusions, with an exposed area of 1.7 km2, and the zircon U-Pb age of the intrusion is 752±4 Ma. The intrusion consists of gabbros, pyroxenites and peridotites, and exhibits a crystallization sequence of the main rock-forming minerals as olivine, orthopyroxene, clinopyroxene and plagioclase. Mineralization occurred at or near the boundaries of the intrusion between pyroxenites and peridotites, and appears as a layered or lenticular shape about 500 m long and 4–15 m wide. The primary sulfides have a relatively simple mineralogy dominated by pyrrhotite-pentlandite-chalcopyrite assemblages, which occur as droplet, star-like and graphic texture and locally sideronitic structures. Geochronological and geochemistry investigations suggest that the Xingdi mafic-ultramafic intrusions and coeval volcanic rock in the Kuluktag area of the Tarim craton formed in an intracontinental breakup environment. Based on the composition of the dominant rockforming minerals and covariant relationships of other oxides versus Mg O, the parental magma of the Xingdi No.3 intrusion belongs to high-Mg tholeiitic basaltic magmas with Mg O of 10.78 wt%. The Xingdi No.3 intrusive rocks are characterized by light REE enrichment relative to heavy REE, negative Nb-Ta anomalies, low 143Nd/144Nd ratios(from 0.511183 to 0.511793) and high initial 87Sr/86Sr ratios(from 0.7051 to 0.7113). The magma was derived from the enriched-lithospheric mantle and was contaminated during emplacement. According to rock assemblages, mineralization, olivine characteristics, geochemical characteristics and mass balance, there are better copper-nickel ore prospects in the Xingdi No.3 intrusion than in the other three intrusions in the area.展开更多
基金National Basic Research Program of China(No.2007CB411402)Cooperation Program of Institute of Geochemistry and Guizhou Geology and Minerals Bureau 102 Geology Group
文摘The Zaibian mafic-ultramafic rock is located in the transitional zone of the Yangtze craton and south China fold system,where is the southwest of Jiangnan orogenic belt(Zeng et al.,2003;Wang et al.,in press).
基金supported by National Natural Science Foundation of China(41072026,41272052)the China Geological Survey project(1212010918003,1212011120158)
文摘The East Kunlun located in the northern margin of the Qinghai-Xizang(Tibet)Plateau,is a composite orogenic belt which has underwent multi-stages tectonic evolution(e.g.Wang and Chen,1987;Jiang et al.,1992;Yang et al.,1996,2009).The East Kunlun orogenic belt(EKOB)is bounded by Altyn Tagh Fault in the west and Wenquan Fault in the east,bounded by the south margin of Qaidam
文摘The platinum group elements (PGE) in the mafic ultramafic suite in the Xinjie layered intrusion and associated basalts and syenites were analyzed using neutron activation techniques after fire assay preconcentration. On this basis, the geochemistry of the platinum group during the magmatic stage is discussed. With respect to PGE distribution, the Xinjie layered intrusion is similar to the Bushveld ferruginous ultramafic series and is distinct from komatiite and Alpine type peridotite. It is also similar to the Emeishan basalt in PGE characteristics, implying that the original magmas of them may be of the same type.
基金This research was supported by the National Natural Science Foundation of China(Grant No.49873006)Major State Basic Research Development Program(Grant No.1999075503)Chinese Academy of Sciences(Grant No.KZCXZ-107).
文摘The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first ob-served that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical char-acters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional ma-fic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.
基金supported by the National Natural Science Foundation of China (No. 41572170)"Thousand Youth Talents Plan" grant to Wei WangMOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR11 and 01-1)
文摘The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not yet clearly constrained, let along their economic significance. The compositions of platinum group elements(PGE) in the Fanjingshan mafic-ultramafic rocks can provide particular insight into the generation and evolution of the mantle-derived magma and thus the potential of Cu-Ni-PGE sulphide mineralization. The Fanjingshan mafic-ultramafic rocks have relatively high Pd-subgroup PGE(PPGE) relative to Ir-subgroup PGE(IPGE) in the primitive mantle-normalized diagrams. Meanwhile, the Fanjingshan mafic-ultramafic rocks have low Pd/Ir(11–28) ratios, implying relatively low degree of partial melting in the mantle. Low Cu/Pd ratios(545–5 216) and high Cu/Zr ratios(0.4–5.8 with the majority greater than 1) of Fanjingshan ultramafic rocks indicate that the S-undersaturated parental magma with relatively high PGE was formed. Although the Fanjingshan mafic rocks have remarkably higher Cu/Pd ratios(8 913–107 016) likely resulting from sulphide segregation, the degree of sulphide removal is insignificant. Fractionation of olivine rather than chromite and platinum group minerals or alloys governed the fractionation of PGE and produced depletion of IPGE(Os, Ir and Ru) relative to PPGE(Rh, Pt and Pd), as supported by the positive correlation between Pd/Ir and V, Y and REE. Collectively, original S-undersaturated magma and insignificant crustal contamination during magma ascent and emplacement result in the separation of immiscible sulphide impossible and thus impede the formation of economic CuNi-PGE sulphide mineralization within the Fanjingshan mafic-ultramafic rocks.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘The Neoproterozoic Gaojiacun intrusive complex (GIC) is composed of one big intrusion (ca. 9 × 7.5 km) and numerous satellite intrusions, emplaced in the low-grade schists of the Neoproterozoic Yanbian Group. The main intrusion is concentrically zoned, with peridotite bodies + leucogabbroids in its core (inner zone) and the sequence: olivine hornblende gabbronorite - porphyric pyroxene hornblende gabbronorite (transitional zone) - pyroxene hornblende gabbronorite + hornblende gabbro + diorite (outer zone), towards the margins. The satellite intrusions are composed either of a single rock type (peridotite, gabbro, diorite or granite) or of different rock types (peridotite + diorite + granite). Upper crustal contamination is evidenced by the occurrence of numerous metamorphic enclaves, migmatites and mixed rocks in the outer zone of the main intrusion and in the satellite intrusions. Hornblende (often oikocrystic) is present in all mafic and ultramafic rocks. Cu-Ni (-PGE) deposits occur in several satellite intrusions, hosted in peridotite. The geochemical and mineralogical features of GIC support the presence of a subduction zone at the western edge of the Yangtze Craton. A feederrelated genesis of the satellite intrusions is inferred.
基金financially supported by the Chinese Academy of Sciences (grant no.KZCX2-YW-Q04-06)the National Key Basic Research Program of China (grant no. 2009CB421005)the National Science Foundation of China (grant no.40973039)
文摘The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.
基金financially supported by the National Science Foundation of China (41402070, 41602082, 4170021021)China Geological Survey (DD20160346)
文摘The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The εNd(t) values in the rock units vary from +6.70 to +9.64, and initial87Sr/86Sr ratios range between 0.7035 and0.7042. Initial206Pb/204Pb,207Pb/204Pb and208Pb/204Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)PMvalues between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)PMratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.
基金supported financially by the NSFC projects(Grant Nos.U1403291,41802074,41830216,41202044)projects of the China Geological Survey(Grant Nos.1212010811033,12120113096500,12120113094000,DD20160123,DD20160009 and DD20179607)+1 种基金the IGCP 662 projectDDE.
文摘Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.
基金This study was financially supported by the Special Fund for Land and Resources Scientific Research of Public Interest(201511020)the Natural Science Foundation of Shaanxi Province(2017JM4002)Natural Science Foundation of China(41873053).
文摘The Eastern Kunlun Orogenic Belt(EKOB)has a complex geological structure and diverse magmatic activities,which are closely related to the Qaidam Basin and the Tethys tectonic evolution.There are at least 3 stages mafic-ultramafic rocks occurred in the Early Paleozoic in EKOB.The first stage is the Later-Silurian to Early Devonian,represented by the giant Xiarihamu super large magmatic Cu-Ni deposit,containing about 1.18 million metric tons(Mt)of nickel with average grades of 0.65%Ni,and its age of ore-forming pyroxene peridotite is 411 Ma;The second stage is the Early Carboniferous,represented by the large Shitoukengde magmatic Cu-Ni sulfide deposit,and its ore-forming age of the olivine websterite is 334 Ma;The third stage of mafic-ultramafic rocks occurred mainly during the Middle-Late Triassic,represented by Xiaojianshan,Lalinggaoli,and Kaimuqi complexes,and no economical ore bodies have been found in this period.The authors summarized the difference between the ore-bearing and the nonmineralized mafic-ultramafic rocks in the EKOB.The olivine of the ore-bearing complexes contains higher MgO and SiO2 content but lower FeO and CaO contents,and the clinopyroxene of ore-bearing complexes contains lower FeO and CaO contents.Crustal sulfur contamination is key to the formation of the giant Xiarihamu Ni deposit,and crustal sulfur contamination degree of the giant magmatic Ni deposit is higher than that of large Ni deposit.The above indicators could guide the exploration and evaluation of similar deposits in the EKOB.
基金supported by the National Natural Science Foundation of China(Grant No.41302070)the Fundamental Research Funds for the Central Universities(310827173401,310827153407)China Regional Geological Survey(12120113043100)
文摘The Xingdi mafic-ultramafic intrusions occur in the northeastern margin of the Tarim craton. The Xingdi No. 3 intrusion is the smallest of four intrusions, with an exposed area of 1.7 km2, and the zircon U-Pb age of the intrusion is 752±4 Ma. The intrusion consists of gabbros, pyroxenites and peridotites, and exhibits a crystallization sequence of the main rock-forming minerals as olivine, orthopyroxene, clinopyroxene and plagioclase. Mineralization occurred at or near the boundaries of the intrusion between pyroxenites and peridotites, and appears as a layered or lenticular shape about 500 m long and 4–15 m wide. The primary sulfides have a relatively simple mineralogy dominated by pyrrhotite-pentlandite-chalcopyrite assemblages, which occur as droplet, star-like and graphic texture and locally sideronitic structures. Geochronological and geochemistry investigations suggest that the Xingdi mafic-ultramafic intrusions and coeval volcanic rock in the Kuluktag area of the Tarim craton formed in an intracontinental breakup environment. Based on the composition of the dominant rockforming minerals and covariant relationships of other oxides versus Mg O, the parental magma of the Xingdi No.3 intrusion belongs to high-Mg tholeiitic basaltic magmas with Mg O of 10.78 wt%. The Xingdi No.3 intrusive rocks are characterized by light REE enrichment relative to heavy REE, negative Nb-Ta anomalies, low 143Nd/144Nd ratios(from 0.511183 to 0.511793) and high initial 87Sr/86Sr ratios(from 0.7051 to 0.7113). The magma was derived from the enriched-lithospheric mantle and was contaminated during emplacement. According to rock assemblages, mineralization, olivine characteristics, geochemical characteristics and mass balance, there are better copper-nickel ore prospects in the Xingdi No.3 intrusion than in the other three intrusions in the area.