磁通门磁力仪是用磁通门传感器对磁场矢量进行测量的装置。传统的磁通门磁力仪多基于模拟电路处理信号,极易受周围环境的影响。针对传统磁通门磁力仪存在的问题,提出了一种基于UCOS内核的高速数字化磁通门磁力仪设计方案。在STM32单片...磁通门磁力仪是用磁通门传感器对磁场矢量进行测量的装置。传统的磁通门磁力仪多基于模拟电路处理信号,极易受周围环境的影响。针对传统磁通门磁力仪存在的问题,提出了一种基于UCOS内核的高速数字化磁通门磁力仪设计方案。在STM32单片机上移植UCOS-II操作系统,对仪器任务进行管理和调度,同时保证任务之间资源同步以及行为同步。这样既可以极大地提高系统效率,又满足高速采集系统实时性要求。所设计的磁通门磁力仪采集精度与PXI采集装置校验后,X轴的偏置平均值为-6 n T,Y轴的偏置平均值为-5 n T,Z轴的偏置平均值为-8 n T,达到野外电磁检测的设计要求。展开更多
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also dis...Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.展开更多
文摘磁通门磁力仪是用磁通门传感器对磁场矢量进行测量的装置。传统的磁通门磁力仪多基于模拟电路处理信号,极易受周围环境的影响。针对传统磁通门磁力仪存在的问题,提出了一种基于UCOS内核的高速数字化磁通门磁力仪设计方案。在STM32单片机上移植UCOS-II操作系统,对仪器任务进行管理和调度,同时保证任务之间资源同步以及行为同步。这样既可以极大地提高系统效率,又满足高速采集系统实时性要求。所设计的磁通门磁力仪采集精度与PXI采集装置校验后,X轴的偏置平均值为-6 n T,Y轴的偏置平均值为-5 n T,Z轴的偏置平均值为-8 n T,达到野外电磁检测的设计要求。
基金supported by the Beijing S&T Project,China(Grant No.Z13111000340000)the National Natural Science Foundation of China(Grant Nos.51325206and 11234013)the National Basic Research Program of China(Grant No.2012CB932900)
文摘Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.