期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Contrasting oxidation states of low-Ti and high-Ti magmas control Ni-Cu sulfide and Fe-Ti oxide mineralization in Emeishan Large Igneous Province 被引量:2
1
作者 Yonghua Cao Christina Yan Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第6期41-58,共18页
Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a rel... Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny. 展开更多
关键词 Emeishan large igneous province Mantle plume High-Ti and low-Ti series magma magma oxygen fugacity magmatic Fe-Ti oxide deposits magmatic Ni-Cu-(PGE)deposits
下载PDF
Mesozoic mafic magmatism in North China:Implications for thinning and destruction of cratonic lithosphere 被引量:63
2
作者 Yongfei ZHENG Zheng XU +1 位作者 Zifu ZHAO Liqun DAI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第4期353-385,共33页
The North China Craton(NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle(SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this ... The North China Craton(NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle(SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction.This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series,manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts(OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast,mafic igneous rocks emplaced before and after this age exhibit both island arc basalts(IAB)-like trace element distribution patterrs and enriched Sr-Nd isotope compositions.This difference indicates a geochemical mutation in the SCLM of North China at^121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite notonly with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at^144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative ε_(Nd)(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled astheno spheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying astheno spheric mantle peridotite to generate the ultramafic metasomatites that show positive ε_(Nd)(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at^121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by moder seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China. 展开更多
关键词 Cratonic destruction Mafic magmas IAB-like series OIB-like series Lithospheric thinning Slab subduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部