This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)we...This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment.展开更多
The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carri...The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility.展开更多
Halloysite nanotubes were used as nanocontainers to hold corrosion inhibitors such as Ce^(3+)-Zr^(4+),2-mercaptobenzothiazole and 8-hydroxyquinoline in their lumen.An acid assisted etching of the nanotubes was carried...Halloysite nanotubes were used as nanocontainers to hold corrosion inhibitors such as Ce^(3+)-Zr^(4+),2-mercaptobenzothiazole and 8-hydroxyquinoline in their lumen.An acid assisted etching of the nanotubes was carried out with a view to increase the lumen diameter and thereby,increase the amount of loading of the corrosion inhibitor.The morphology of as-received and etched halloysite nanotubes was ob-served using TEM analysis.The loading of corrosion inhibitors was confirmed using SEM-EDS and BET analysis.Polymeric microcapsules were used as capping agents for the ends of the loaded HNTs following which,they were dispersed into a hybrid sol-gel silica matrix.Dip coating method was used to generate coatings on AZ91D substrates followed by heat treatment at 130℃ for 1 h.The release rate kinetics of corrosion inhibitors from as-received and etched nanotubes was investigated in buffer solutions of 3.5 wt%NaCl at different pH.The release mechanism of corrosion inhibitors from the HNT lumen was validated using various semi-empirical models.Coatings were also evaluated for their corrosion protection ability using electrochemical techniques after exposure to 3.5 wt%NaCl solution for 120 h.Coatings generated using Ce^(3+)-Zr^(4+)loaded into as-received halloysite nanotubes have shown more effective corrosion protection when compared to other corrosion inhibitors after 120 h exposure to the corrosive medium.展开更多
The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were in...The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature.展开更多
Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions...Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.展开更多
The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties...The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.展开更多
Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle ...Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.展开更多
The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D se...The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt.展开更多
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur...The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.展开更多
Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) a...Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) and scanning electron microscopy (SEM). The recycled specimens consist of fine grains due to dynamic recrystallization and the interfaces of original individual scraps are not identified. Tensile tests were performed at a strain rate of 5 x 10 3 s 1 at room temperature (27 ~C), -70, -100 and 130 ~C, respectively. Ultimate tensile strength of the specimens increases slightly with decreasing the tensile temperature, and elongation to failure decreases with decreasing the tensile temperature. The tensile specimens at -130 ~C show the highest ultimate tensile strength of 360.65 MPa and the lowest elongation to failure of 5.46%. Impact tests were performed at room temperature (27 ~C), -70 and -130 ~C, respectively. Impact toughness decreases with decreasing the impact temperature. The impact specimens at -130 ~C show the lowest impact toughness of 3.06 J/cm2.展开更多
To develop AZ91D alloys with fine microstructure, effects of the addition of rare earth (RE), Sr and RE + Sr on the dendrite growth and phase precipitation in AZ91D magnesium alloy were studied, respectively. The resu...To develop AZ91D alloys with fine microstructure, effects of the addition of rare earth (RE), Sr and RE + Sr on the dendrite growth and phase precipitation in AZ91D magnesium alloy were studied, respectively. The results show that the microstructure is refined and the morphology of β-Mg17A112 phase is modified with RE or Sr addition, especially with the RE+Sr composite addition which can reduce the average grain size of AZ91D alloy obviously to 141 μm. The needle-like or block-like new phases adhering to β-Mg17A112 phase form at interdendrites during solidification. The enrichment of RE or/and Sr elements in front of the solidification interface, especially at the tips of α-Mg dendrite, which restricts the growth of α-Mg dendrite, changes the preferential growth of α-Mg and finally results in the grain refinement and the blunting of α-Mg dendrite.展开更多
The microstructure distribution rule of semi-solid AZ91D alloy treated by ultrasonic was researched, and mechanical properies of specimens before and after ultrasonic treatment were investigated further.Semi-solid AZ9...The microstructure distribution rule of semi-solid AZ91D alloy treated by ultrasonic was researched, and mechanical properies of specimens before and after ultrasonic treatment were investigated further.Semi-solid AZ91D melt specimens were processed by ultrasonic under different powers, and its microstructures and mechanical properties at different sampling points in specimens were obtained. The experimental results show that the microstructure of AZ91D alloy at different sampling points under the same ultrasonic power is different in grain size and shape, and there is also great difference among their microstructures at the same sampling point under different ultrasonic powers. AZ91D alloy treated by ultrasonic can obtain increment in both tensile strength and plasticity. Under same ultrasonic power, mechanical properties of specimen at different sampling points have obvious difference, and regularity for change of mechanical properties everywhere is similar to regularity for change of grain size and shape everywhere.展开更多
Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical comp...Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.展开更多
The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of bille...The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.展开更多
The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir weld...The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir welding(FSW)was investigated.The FSW was applied at the rotational speed of 1400 r/min and welding speed of 40 mm/min and no defects were observed.Using the same welding parameters,the process was carried out with inducing ultrasonic vibrations to the weld line at the amplitude of 15μm.The microstructure of the specimens was observed with optical and scanning electron microscopy.The results indicate that a very fine microstructure is obtained in UaFSW with respect to that of conventional FSW.Moreover,β-Mg17Al12 coarse dendrites are segregated to very fine and partly spherical particles that homogeneously distribute inα-Mg matrix.This remarkably-modified morphology of microstructure attributed to severe plastic deformation comes from ultrasonic vibration and friction stirring effect.Tensile and hardness tests were performed to evaluate the mechanical properties of the welds.According to the results,the vibration greatly improves the mechanical properties of the conventional FSW joint.The tensile strength and hardness are increased from 195 MPa and HV 79 in conventional FSW to 225 MPa and HV 87 in UaFSW,respectively.展开更多
To improve the surface properties of AZ91 magnesium alloy, Ni-SiC nanocomposite coatings with various SiC contents were pulse electrodeposited in modified Watts baths containing SiC nano-particles with the concentrati...To improve the surface properties of AZ91 magnesium alloy, Ni-SiC nanocomposite coatings with various SiC contents were pulse electrodeposited in modified Watts baths containing SiC nano-particles with the concentration of 0-15 g/L. The morphology of the coatings was studied by scanning electron microscope (SEM). The SiC content of the coatings was measured by energy dispersive spectroscopy (EDS) analyzer. Microhardness measurement of the coatings showed up to 600% enhancement for the sample produced from the bath with 15 g/L SiC. The corrosion behavior of the coated AZ91 alloy was investigated by potentiodynamic polarization method. The results reveal a significant improvement in the corrosion resistance, that is, the corrosion current density decreases from 0.13 mA/cm2 for uncoated specimen to 1.74x10-6 mA/cm2 for the sample coated from the bath containing 15 g/L SiC and the corrosion potential increases from -1.6 V for uncoated specimen to -0.31 V for the sample coated from the bath. The wear resistance of both coated and uncoated samples was evaluated by pin-on-disc tribotester. The results show that the wear volume loss of coated sample is 8 times less than the bare alloy.展开更多
6 mm thick AZ91 casting alloy plates were subjected to normal friction stir processing(NFSP,in air)and submerged friction stir processing(SFSP,under water),and microstructures and tensile properties of the experimenta...6 mm thick AZ91 casting alloy plates were subjected to normal friction stir processing(NFSP,in air)and submerged friction stir processing(SFSP,under water),and microstructures and tensile properties of the experimental materials were investigated.After FSP,the coarse microstructures in the as-cast condition are replaced by fine and equiaxed grains and the network-like eutecticβ-Mg_(17)Al_(12)phases disappear and are changed into particles pinned at the grain boundaries.SFSP results in further grain refinement in comparison with NFSP,and the average grain sizes of the NFSP and SFSP alloys are 8.4±1.3 and 2.8±0.8µm,respectively.XRD results reveal that the intensity ofβ-Mg_(17)Al_(12)diffraction peaks in the SFSP specimen decreases compared with NFSP.Due to significant grain refinement,the tensile strength and elongation of the SFSP AZ91 alloy are increased from 262 MPa and 18.9%for the NFSP material to 282 MPa and 25.4%,and the tensile strength(282 MPa)is nearly three times that of the BM(105 MPa).SFSP is an effective approach to refine the grain size and enhance the tensile properties of AZ91 casting alloy.展开更多
To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results sh...To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results show that critical forming forces and maximal forming forces could be obtained and related to the holding times in the semi-solid forming process. In the holding time of 0-2700 s, with increasing the holding time, maximal forming force decreased sharply and critical forming force decreased slowly. In the whole thixotropic flowing process, the filling-in was steady and the surface fineness was good. The forming force increased when the slurry changed the flowing direction or flowed from the big-diameter chamber to the small-diameter one. The tensile strength and elongation to failure of the sample after holding time for 2700 s, compared to as-cast sample, are increased by approximately 42.7% and 180%, respectively, and the fractured surfaces presented dimple-like pattern.展开更多
The effects of non-flux purification techniques on the mechanical properties and microstructure of AZ91 magnesium alloy were investigated by ICP,OM,XRD and SEM.The results show that Ar spraying with high flow rate cou...The effects of non-flux purification techniques on the mechanical properties and microstructure of AZ91 magnesium alloy were investigated by ICP,OM,XRD and SEM.The results show that Ar spraying with high flow rate could remove non-metallic inclusions and improve the mechanical properties of AZ91.The alloy obtains the best properties after argon spraying for 30 min at the melt temperature of 740 °C.The ceramic foam filter(CFF) could effectively improve the ultimate tensile strength and elongation of AZ91 alloy,especially the elongation,which increase with increasing pores per inch(ppi) and the thickness of CFF.Non-flux purification does not change the microstructure of AZ91 alloy.However,filtration has a certain effect on the fracture pattern of AZ91 alloy.To improve the mechanical properties effectively,both filtration and gas spraying should be utilized together.展开更多
基金financial sup-port from SERB,DST for the funding provided through grant number SB/S3/ME/007/2014.
文摘This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment.
基金[The work is financially supported by "973" key foundation of China (No. 2000067202).]
文摘The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility.
文摘Halloysite nanotubes were used as nanocontainers to hold corrosion inhibitors such as Ce^(3+)-Zr^(4+),2-mercaptobenzothiazole and 8-hydroxyquinoline in their lumen.An acid assisted etching of the nanotubes was carried out with a view to increase the lumen diameter and thereby,increase the amount of loading of the corrosion inhibitor.The morphology of as-received and etched halloysite nanotubes was ob-served using TEM analysis.The loading of corrosion inhibitors was confirmed using SEM-EDS and BET analysis.Polymeric microcapsules were used as capping agents for the ends of the loaded HNTs following which,they were dispersed into a hybrid sol-gel silica matrix.Dip coating method was used to generate coatings on AZ91D substrates followed by heat treatment at 130℃ for 1 h.The release rate kinetics of corrosion inhibitors from as-received and etched nanotubes was investigated in buffer solutions of 3.5 wt%NaCl at different pH.The release mechanism of corrosion inhibitors from the HNT lumen was validated using various semi-empirical models.Coatings were also evaluated for their corrosion protection ability using electrochemical techniques after exposure to 3.5 wt%NaCl solution for 120 h.Coatings generated using Ce^(3+)-Zr^(4+)loaded into as-received halloysite nanotubes have shown more effective corrosion protection when compared to other corrosion inhibitors after 120 h exposure to the corrosive medium.
基金This work is partially supported from the National Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant RGPIN48158 awarded to M.Hasan of McGill University,Montreal,for which the authors are grateful.
基金the National Key Technology R&D Program for the 11th Five-Year Plan(2006BAE04B01 ,2006BAE04B04) the National Basic Research Program ("973") of China (2007CB613705)
文摘The preparation techniques of Mg-mischmetal intermediate alloy and the effects of the mischmetal addition ranging from 0.45% to 1.04% on the microstructure and properties of AZ91D alloy prepared by die casting were investigated. The Mg-MM intermediate alloy was prepared by permanent mold casting and then was extruded into the bars. The microstructure and analytical studies were carried out using optical microscopy and differential scanning calorimetry (DSC). Testing results shows the Mg-MM intermediate alloy could melt easily down at die casting temperature of 680 ℃ that was lower than the melting point of lanthanum (918 ℃) and that of cerium (798 ℃). This was propitious to protection the alloy from the oxidation at high temperatures. Then magnesium alloy test bars were produced under conventional cold chamber die casting condition with addition of different weight of the Mg-MM intermediate alloy. Observation and analysis indicated that the microstructures of the alloy were refined and RE containing Al phase was formed with increasing RE addition. The data obtained by tensile tests showed that alloying with mischmetal improved the tensile property of the AZ91D magnesium die casting alloy at ambient temperature.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject supported by Research Program of Excellent Scholars Studying Abroad of Ministry of Human Resources and Social Security,China
文摘Ceramic oxide coatings were prepared on AZ91D magnesium alloys in alkaline silicate solution using micro-arc oxidation(MAO) technique.The corrosion behavior of MAO coating on AZ91D magnesium alloys in NaCl solutions with different concentrations(0.1%,0.5%,1.0%,3.5% and 5.0% in mass fraction) was evaluated by electrochemical measurements and immersion tests.The results showed that the corrosion rate of the MAO coated AZ91D increased with increasing chloride ion concentration.The main form of corrosion failure was localized corrosion for the MAO coated AZ91D immersed in higher concentration NaCl solutions(1.0%,3.5% and 5.0%),while it was general corrosion in dilute NaCl solutions(0.1% and 0.5%).Two different stages of the failure process of the MAO coated AZ91D could be identified:1) occurrence of the metastable pits and 2) growth of the pits.Different equivalent circuits were also proposed based on the results of electrochemical impedance spectroscopy(EIS) for the MAO coated AZ91D immersed in different concentrations of NaCl solutions for 120 h.
基金Project(11005151)supported by the Young Scientists Fund of the National Natural Science Foundation of ChinaProject(YETP1297)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(BEIJ2014110003)supported by the Undergraduate Research and Innovative Undertaking Program of Beijing,China
文摘The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.
基金Project (50801056) supported by the National Natural Science Foundation of ChinaProject (2005DKA10400-Z20) supported by the National R&D Infrastructure and Facility Development Program of ChinaProject supported by the Zijin Project of Zhejiang University, China
文摘Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProjects(20120073120011,20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt.
文摘The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.
基金Projects(50674038,50974048)supported by the National Natural Science Foundation of ChinaProject(200802140004)supported by Doctoral Fund of Ministry of Education of China
文摘Low temperature mechanical properties of AZ91D magnesium alloy fabricated by solid recycling process from recycled scraps were studied. Various microstructural analyses were performed using optical microscopy (OM) and scanning electron microscopy (SEM). The recycled specimens consist of fine grains due to dynamic recrystallization and the interfaces of original individual scraps are not identified. Tensile tests were performed at a strain rate of 5 x 10 3 s 1 at room temperature (27 ~C), -70, -100 and 130 ~C, respectively. Ultimate tensile strength of the specimens increases slightly with decreasing the tensile temperature, and elongation to failure decreases with decreasing the tensile temperature. The tensile specimens at -130 ~C show the highest ultimate tensile strength of 360.65 MPa and the lowest elongation to failure of 5.46%. Impact tests were performed at room temperature (27 ~C), -70 and -130 ~C, respectively. Impact toughness decreases with decreasing the impact temperature. The impact specimens at -130 ~C show the lowest impact toughness of 3.06 J/cm2.
基金Project(50774075) supported by the National Natural Science Foundation of ChinaProject(2007CB613705) supported by the National Basic Research Program of China
文摘To develop AZ91D alloys with fine microstructure, effects of the addition of rare earth (RE), Sr and RE + Sr on the dendrite growth and phase precipitation in AZ91D magnesium alloy were studied, respectively. The results show that the microstructure is refined and the morphology of β-Mg17A112 phase is modified with RE or Sr addition, especially with the RE+Sr composite addition which can reduce the average grain size of AZ91D alloy obviously to 141 μm. The needle-like or block-like new phases adhering to β-Mg17A112 phase form at interdendrites during solidification. The enrichment of RE or/and Sr elements in front of the solidification interface, especially at the tips of α-Mg dendrite, which restricts the growth of α-Mg dendrite, changes the preferential growth of α-Mg and finally results in the grain refinement and the blunting of α-Mg dendrite.
基金Funded by the National Science Foundation of China(50465003)the Project Funded by Science and Technology Department of Jiangxi Province,China(20061B0102200)
文摘The microstructure distribution rule of semi-solid AZ91D alloy treated by ultrasonic was researched, and mechanical properies of specimens before and after ultrasonic treatment were investigated further.Semi-solid AZ91D melt specimens were processed by ultrasonic under different powers, and its microstructures and mechanical properties at different sampling points in specimens were obtained. The experimental results show that the microstructure of AZ91D alloy at different sampling points under the same ultrasonic power is different in grain size and shape, and there is also great difference among their microstructures at the same sampling point under different ultrasonic powers. AZ91D alloy treated by ultrasonic can obtain increment in both tensile strength and plasticity. Under same ultrasonic power, mechanical properties of specimen at different sampling points have obvious difference, and regularity for change of mechanical properties everywhere is similar to regularity for change of grain size and shape everywhere.
基金Project(51371116)supported by the National Natural Science Foundation of ChinaProject(2009AA033501)supported by the Ministry of Science and Technology,China
文摘Electroless nickel plating on AZ91D substrate with a new and eco-friendly pretreatment process based on tuning an electrochemical homogeneous surface was investigated. The morphology, deposition process, chemical composition and microstructure of Ni-P coating were studied. It is indicated that β phases are selectively removed, producing a microstructural homogeneous surface and the subsequent uniform and compact Zn immersion layer. A defect-free and well adhesive Ni-P coating can be successfully obtained due to its uniform nucleation and growth based on such pretreatment. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests reveal that Ni-P coating could significantly improve the corrosion resistance of AZ91D substrate.
文摘The investment on semi-solid die casting processes of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes is introduced. The processes of low super-heat and cooling slope for the preparation of billets with non-dendritic microstructure, the remelting of billets for thixoforming and the parameters in the process of semi-sohd thixoforming have been researched. The results show that primary billets with non-dendritical structures can be prepared by forming great amount of nuclei in melt via the process of low super heat. By optimizing the remelting process through adjusting the current of the induced equipment, semi-solid billets with a structure of spherical grains were obtained from the primary billets with non-dendritical structure. The range of 580℃ to 583℃ is the proper remelting temperatures by which the billets have an expected thixotropy and can be transferred to a die-casting machine. The optimized parameters of semi-solid forming in a die-casting machine are as follows: the area of the ingate in the die is 383.5 mm^2, the speed of the pierce of the machine 5 m/s, the shot pressure of the pierce 75 MPa, and the maintenance pressure of the pierce 350 MPa. The castings of brackets for supporting generators in JH70 type motorbikes were formed by adopting the optimized processes and parameters mentioned above.
文摘The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir welding(FSW)was investigated.The FSW was applied at the rotational speed of 1400 r/min and welding speed of 40 mm/min and no defects were observed.Using the same welding parameters,the process was carried out with inducing ultrasonic vibrations to the weld line at the amplitude of 15μm.The microstructure of the specimens was observed with optical and scanning electron microscopy.The results indicate that a very fine microstructure is obtained in UaFSW with respect to that of conventional FSW.Moreover,β-Mg17Al12 coarse dendrites are segregated to very fine and partly spherical particles that homogeneously distribute inα-Mg matrix.This remarkably-modified morphology of microstructure attributed to severe plastic deformation comes from ultrasonic vibration and friction stirring effect.Tensile and hardness tests were performed to evaluate the mechanical properties of the welds.According to the results,the vibration greatly improves the mechanical properties of the conventional FSW joint.The tensile strength and hardness are increased from 195 MPa and HV 79 in conventional FSW to 225 MPa and HV 87 in UaFSW,respectively.
文摘To improve the surface properties of AZ91 magnesium alloy, Ni-SiC nanocomposite coatings with various SiC contents were pulse electrodeposited in modified Watts baths containing SiC nano-particles with the concentration of 0-15 g/L. The morphology of the coatings was studied by scanning electron microscope (SEM). The SiC content of the coatings was measured by energy dispersive spectroscopy (EDS) analyzer. Microhardness measurement of the coatings showed up to 600% enhancement for the sample produced from the bath with 15 g/L SiC. The corrosion behavior of the coated AZ91 alloy was investigated by potentiodynamic polarization method. The results reveal a significant improvement in the corrosion resistance, that is, the corrosion current density decreases from 0.13 mA/cm2 for uncoated specimen to 1.74x10-6 mA/cm2 for the sample coated from the bath containing 15 g/L SiC and the corrosion potential increases from -1.6 V for uncoated specimen to -0.31 V for the sample coated from the bath. The wear resistance of both coated and uncoated samples was evaluated by pin-on-disc tribotester. The results show that the wear volume loss of coated sample is 8 times less than the bare alloy.
基金This work was sponsored by the Fundamental Research Funds for the Central Universities(No.2014ZG0028)Research Fund for the Doctoral Program of Higher Education of China(No.20130172110044).
文摘6 mm thick AZ91 casting alloy plates were subjected to normal friction stir processing(NFSP,in air)and submerged friction stir processing(SFSP,under water),and microstructures and tensile properties of the experimental materials were investigated.After FSP,the coarse microstructures in the as-cast condition are replaced by fine and equiaxed grains and the network-like eutecticβ-Mg_(17)Al_(12)phases disappear and are changed into particles pinned at the grain boundaries.SFSP results in further grain refinement in comparison with NFSP,and the average grain sizes of the NFSP and SFSP alloys are 8.4±1.3 and 2.8±0.8µm,respectively.XRD results reveal that the intensity ofβ-Mg_(17)Al_(12)diffraction peaks in the SFSP specimen decreases compared with NFSP.Due to significant grain refinement,the tensile strength and elongation of the SFSP AZ91 alloy are increased from 262 MPa and 18.9%for the NFSP material to 282 MPa and 25.4%,and the tensile strength(282 MPa)is nearly three times that of the BM(105 MPa).SFSP is an effective approach to refine the grain size and enhance the tensile properties of AZ91 casting alloy.
文摘To investigate the thixotropic fluidities, microstructures and mechanical properties of semi-solid AZ91D magnesium alloy during reheating, a self-made die set with channels of different sizes were used. The results show that critical forming forces and maximal forming forces could be obtained and related to the holding times in the semi-solid forming process. In the holding time of 0-2700 s, with increasing the holding time, maximal forming force decreased sharply and critical forming force decreased slowly. In the whole thixotropic flowing process, the filling-in was steady and the surface fineness was good. The forming force increased when the slurry changed the flowing direction or flowed from the big-diameter chamber to the small-diameter one. The tensile strength and elongation to failure of the sample after holding time for 2700 s, compared to as-cast sample, are increased by approximately 42.7% and 180%, respectively, and the fractured surfaces presented dimple-like pattern.
基金Project(08XD14020) supported by the Program of Shanghai Subject Chief Scientist,ChinaProject(2007CB613701) supported by the National Basic Research Program of ChinaProject(2009AA033501) supported by the National High-tech Research and Development Program of China
文摘The effects of non-flux purification techniques on the mechanical properties and microstructure of AZ91 magnesium alloy were investigated by ICP,OM,XRD and SEM.The results show that Ar spraying with high flow rate could remove non-metallic inclusions and improve the mechanical properties of AZ91.The alloy obtains the best properties after argon spraying for 30 min at the melt temperature of 740 °C.The ceramic foam filter(CFF) could effectively improve the ultimate tensile strength and elongation of AZ91 alloy,especially the elongation,which increase with increasing pores per inch(ppi) and the thickness of CFF.Non-flux purification does not change the microstructure of AZ91 alloy.However,filtration has a certain effect on the fracture pattern of AZ91 alloy.To improve the mechanical properties effectively,both filtration and gas spraying should be utilized together.