期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery 被引量:3
1
作者 Xingrui Chen Yonghui Jia +4 位作者 Qichi Le Henan Wang Xiong Zhou Fuxiao Yu Andrej Atrens 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2113-2121,共9页
In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical b... In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical behaviors and surface morphologies after discharge have been discussed to connect the discharge properties.The results indicate that the modified AZ80-La-Gd is an outstanding candidate for anode for Mg-air batter,which has high cell voltage,stable discharge curves,good specific capacity and energy,and good anodic efficiency.It exhibits the best anodic efficiency,specific capacity and energy of 76.45%,1703.6 mAh·g^(-1)and 2186.3 mWh·g^(-1),respectively,which are20.24%,18.92%and 25.71%higher than values for AZ80 anode.Such excellent discharge performance is attributed to the Al-RE particles.They refine the Mg_(17)Al_(12)phase and therefore improve the self-corrosion resistance and desorption ability of AZ80 anode. 展开更多
关键词 Mg-air batteries magnesium anode Discharge performance Electrochemical behaviors RE compound
下载PDF
Tailoring the microstructure of Mg-Al-Sn-RE alloy via friction stir processing and the impact on its electrochemical discharge behaviour as the anode for Mg-air battery
2
作者 Jingjing Liu Hao Hu +4 位作者 Tianqi Wu Jinpeng Chen Xusheng Yang Naiguang Wang Zhicong Shi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1554-1565,共12页
Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this... Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this unique microstructure can hardly be achieved with conventional plastic deformation such as rolling or extrusion.Herein,we tailor the microstructure of Mg-Al-Sn-RE alloy by using the friction stir processing,which obviously refines the grains without increasing dislocation density or strengthening crystal orientation.The Mg-air battery with the processed Mg-Al-Sn-RE alloy as the anode exhibits higher discharge voltages and capacities than that employing the untreated anode.Furthermore,the impact of friction stir processing on the electrochemical discharge behaviour of Mg-Al-Sn-RE anode and the corresponding mechanism are also analysed according to microstructure characterization and electrochemical response. 展开更多
关键词 magnesium anode Electrochemical discharge behaviour Mg-air battery Friction stir processing
下载PDF
Unlock the full potential of carbon cloth-based scaffolds towards magnesium metal storage via regulation on magnesiophilicity and surface geometric structure
3
作者 Jing Liu Min Wang +4 位作者 Zhonghua Zhang Jinlei Zhang Yitao He Zhenfang Zhou Guicun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期423-434,I0010,共13页
The development of rechargeable magnesium(Mg) batteries is of practical significance to upgrade the electric energy storage devices due to exceptional capacity and abundant resources of Mg-metal anode.However,the reve... The development of rechargeable magnesium(Mg) batteries is of practical significance to upgrade the electric energy storage devices due to exceptional capacity and abundant resources of Mg-metal anode.However,the reversible Mg electrochemistry suffers from unsatisfied rate capability and lifespan,mainly caused by non-uniform distribution of electrodeposits.In this work,a fresh design concept of threedimensional carbon cloths scaffolds is proposed to overcome the uncontrollable Mg growth via homogenizing electric field and improving magnesiophilicity.A microscopic smooth and nitrogen-containing defective carbonaceous layer is constructed through a facile pyrolysis of ZIF8 on carbon cloths.As revealed by finite element simulation and DFT calculation results,the smooth surface endows with uniform electric field distribution and simultaneously the nitrogen-doping species enable good magnesiophilicity of scaffolds.The fine and uniform Mg nucleus as well as the inner electrodeposit behavior are also disclosed.As a result,an exceptional cycle life of 500 cycles at 4.0 mA cm^(-2) and 4.0 mA h cm^(-2) is firstly realized to our best knowledge.Besides,the functional scaffolds can be cycled for over 2200 h at 2.0 mA cm^(-2) under a normalized capacity of 5.0 mA h cm^(-2),far exceeding previous results.This work offers an effective approach to enable the full potential of carbon cloths-based scaffolds towards metal storage for next generation battery applications. 展开更多
关键词 magnesium metal anodes ELECTRODEPOSITION Heterogeneous nucleation
下载PDF
Recent advances based on Mg anodes and their interfacial modulation in Mg batteries 被引量:1
4
作者 Fanfan Liu Guoqin Cao +6 位作者 Jinjin Ban Honghong Lei Yan Zhang Guosheng Shao Aiguo Zhou Li zhen Fan Junhua Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2699-2716,共18页
Magnesium(Mg)batteries(MBs),as post-lithium-ion batteries,have received great attention in recent years due to their advantages of high energy density,low cost,and safety insurance.However,the formation of passivation... Magnesium(Mg)batteries(MBs),as post-lithium-ion batteries,have received great attention in recent years due to their advantages of high energy density,low cost,and safety insurance.However,the formation of passivation layers on the surface of Mg metal anode and the poor compatibility between Mg metal and conventional electrolytes during charge-discharge cycles seriously affect the performance of MBs.The great possibility of generating Mg dendrites has also caused controversy among researchers.Moreover,the regulation of Mg deposition and the enhancement of battery cycle stability is largely limited by interfacial stability between Mg metal anode and electrolyte.In this review,recent advances in interfacial science and engineering of MBs are summarized and discussed.Special attention is given to interfacial chemistry including passivation layer formation,incompatibilities,ion transport,and dendrite growth.Strategies for building stable electrode/interfaces,such as anode designing and electrolyte modification,construction of artificial solid electrolyte interphase(SEI)layers,and development of solid-state electrolytes to improve interfacial contacts and inhibit Mg dendrite and passivation layer formation,are reviewed.Innovative approaches,representative examples,and challenges in developing high-performance anodes are described in detail.Based on the review of these strategies,reference is provided for future research to improve the performance of MBs,especially in terms of interface and anode design. 展开更多
关键词 magnesium anode DENDRITE Passivation layers Interfacial engineering Solid electrolyte interphase
下载PDF
Corrosion protection of magnesium alloys anode by cerium-based anodization coating in magnesium-ait battery 被引量:2
5
作者 Xiang You Xiaowei Zhang +6 位作者 Chuang Yu Yuanliang Chen Huiming Li Yanqing Hou Lin Tian Ni Yang Gang Xie 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期471-476,I0006,共7页
CeN_(3)O_(9)·6H_(2)O(0.5,1.0,1.5,and 2.0 g/L)was added into an 8.0%NaCl electrolyte solution to investigate this electrolyte for use in a Mg-air battery.The effects of the amount of CeN_(3)O_(9)-6H_(2)O on the co... CeN_(3)O_(9)·6H_(2)O(0.5,1.0,1.5,and 2.0 g/L)was added into an 8.0%NaCl electrolyte solution to investigate this electrolyte for use in a Mg-air battery.The effects of the amount of CeN_(3)O_(9)-6H_(2)O on the corrosion resistance of an AZ31 Mg alloy anode and battery performance were investigated using microstructure,electrochemical(dynamic potential polarization method and electrochemical impedance spectroscopy),and battery measurements.The re sults show that the addition of CeN_(3)O_(9)·6H_(2)O to the electrolyte leads to the formation of a Ce(OH)_(3)protective film on the surface of the AZ31 Mg alloy that improves the corrosion resistance of the Mg alloy.An increase in the concentration of CeN_(3)O_(9)·6H_(2)O results in a denser Ce(OH)_(3)protective film and decreases corrosion rate of the AZ31 Mg alloy.When the concentration of CeN_(3)O_(9)·6H_(2)O is 1.0 g/L,the corrosion rate of the Mg alloy is the lowest with a corrosion inhibition rate of70.4%.However,the corrosion rate increases due to the dissolution of the Ce(OH)_(3)protective film when the concentration of CeN_(3)O_(9)-6H_(2)O is greater than 1.0 g/L.Immersing the Mg alloy in the electrolyte solution containing CeN_(3)O_(9)-6H_(2)O for 50 h leads to the formation of the Ce(HO)_(3)protective film on its surface,which was confirmed by scanning electron microscopy of the AZ31 alloy.The Mg^(2+)charge transfer resistance increases by 69.5Ωfrom the equivalent circuit diagram,which improves the corrosion resistance of the Mg alloy.The discharge performance of CeN_(3)O_(9)·6H_(2)O improves according to a discharge test,and the discharge time increases by 40 min. 展开更多
关键词 Az31 magnesium alloy anode CeN_(3)O_(9)·6H_(2)O addition magnesium-air battery Corrosion rate Electrochemical Rare earths
原文传递
Investigation on corrosion of yttrium-doped magnesium-based sacrificial anode in ground grid protection 被引量:2
6
作者 冯拉俊 闫爱军 +1 位作者 孟勇强 侯娟玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期389-392,共4页
In the simulated DC and AC discharge circuit in ground grid protection of substation,corrosion and potential of magnesium anode with yttrium addition were studied by potential measurement and scanning electron microsc... In the simulated DC and AC discharge circuit in ground grid protection of substation,corrosion and potential of magnesium anode with yttrium addition were studied by potential measurement and scanning electron microscopy.The results showed that potential of anode increased with increasing current density in DC simulation,potential increase of anode with 0.1% yttrium addition was the smallest,and the affordable current density of the anode reached 1.85 A/cm2,which was two times that of the anode without yttrium addition.In AC simulation,addition of yttrium had less effect on its potential.Grains of magnesium alloy sacrificial anode without yttrium addition were the equiaxed grains of magnesium grains coated with β-Mg17Al12,while the anode with yttrium was α-Mg phase with dispersed β phase.The corroded magnesium anode with 0.1% yttrium addition showed the most uniform and the smallest pit on its surface. 展开更多
关键词 YTTRIUM magnesium anode ground grid rare earths
原文传递
Plasma-processed homogeneous magnesium hydride/ carbon nanocomposites for highly stable lithium storage 被引量:1
7
作者 Xinghua Chang Xinyao Zheng +3 位作者 Yanru Guo Jun Chen Jie Zheng Xingguo Li 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2724-2732,共9页
Magnesium hydride (MgH2) is a high-capacity anode material for lithium ion batteries, which suffers from poor cycling stability. In this stud)~ we describe a thermal plasma-based approach to prepare homogeneous MgH... Magnesium hydride (MgH2) is a high-capacity anode material for lithium ion batteries, which suffers from poor cycling stability. In this stud)~ we describe a thermal plasma-based approach to prepare homogeneous MgH2/C nanocomposites with very high cycling stability. In this process, magnesium evaporation is coupled with carbon generation from the plasma decomposition of acetylene, leading to a homogeneous Mg/C nanocomposite, which can be easily converted to MgH2/C by hydrogenation. The MgH2/C nanocomposite achieves a high reversible capacity of up to 620 mAh·g^-1 after 1,000 cycles with an ultralow decay rate of only 0.0036% per cycle, which represents a significantly improved performance compared to previous results. 展开更多
关键词 magnesium hydride anode lithium-ion batteries thermal plasma nanocomposite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部