Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uen...Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.展开更多
In order to control the grain size during hot forming,grain growth behavior of a pre-extruded Mg-6Zn magnesium alloy and its correlation with solute and second phase distribution were investigated.Isothermal annealing...In order to control the grain size during hot forming,grain growth behavior of a pre-extruded Mg-6Zn magnesium alloy and its correlation with solute and second phase distribution were investigated.Isothermal annealing was conducted on a Gleeble-1500 thermo-mechanical simulator.The mean grain size Dg of each annealed specimen was measured by the quantitative metallography technique.The grain growth kinetics of the Mg-6Zn alloy annealed at 473-623 K was obtained as Dg^4- Dg0^4=2.25 ×10^11 exp(-95450)by the least square linear regression method.The deviation of grain growth exponent n = 4 from the theoretical value of 2 may be attributed to the presence of solute zinc and second phases which will retard the boundary migration.Microscopic observations show that the non-uniform distribution of grain size for samples pre-extruded or annealed at low temperatures is closely related to the non-uniform distribution of fine and dispersed second phases but not to the non-uniform distribution of solute zinc.This indicates that second phase pinning effect plays an important role in microstructure refinement.展开更多
基金Funded by the National Natural Science Foundation of China(No.51478370)the EPSRC-NSFC Joint Research Projec(No.51461135005)
文摘Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.
基金the financial support from the National Natural Science Foundation of China(Grant No.51105328)the Natural Science Foundation of Jiangsu Province of China(No.BK20130447)the Colleges and Universities in Jiangsu Province Natural Science Foundation of China(Grant No.13KJB430026)
文摘In order to control the grain size during hot forming,grain growth behavior of a pre-extruded Mg-6Zn magnesium alloy and its correlation with solute and second phase distribution were investigated.Isothermal annealing was conducted on a Gleeble-1500 thermo-mechanical simulator.The mean grain size Dg of each annealed specimen was measured by the quantitative metallography technique.The grain growth kinetics of the Mg-6Zn alloy annealed at 473-623 K was obtained as Dg^4- Dg0^4=2.25 ×10^11 exp(-95450)by the least square linear regression method.The deviation of grain growth exponent n = 4 from the theoretical value of 2 may be attributed to the presence of solute zinc and second phases which will retard the boundary migration.Microscopic observations show that the non-uniform distribution of grain size for samples pre-extruded or annealed at low temperatures is closely related to the non-uniform distribution of fine and dispersed second phases but not to the non-uniform distribution of solute zinc.This indicates that second phase pinning effect plays an important role in microstructure refinement.