The quasi-static compressive mechanical behavior and deformation mechanism of closed-cell magnesium foams were studied, and the ef- fects of the density of magnesium foams on the compressive and energy absorption prop...The quasi-static compressive mechanical behavior and deformation mechanism of closed-cell magnesium foams were studied, and the ef- fects of the density of magnesium foams on the compressive and energy absorption properties were also discussed. The results show that the compressive process of closed-cell magnesium foams is characterized by three deformation stages: linear elastic stage, collapsing stage and densification stage. At the linear elastic stage, the peak compressive strength (t70) and Young's modulus (E0) increase as the density increases Magnesium foams can absorb energy at the collapsing stage. In a certain strain range, the energy absorption capacity also increases as the density of magnesium foams increases.展开更多
Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uen...Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.展开更多
High-porosity,open-cell AZ91 magnesium alloy foams of two pore sizes were fabricated by means of investment casting technology,using PUR foam patterns.Foam casting variables such as pressure,mould temperature and meta...High-porosity,open-cell AZ91 magnesium alloy foams of two pore sizes were fabricated by means of investment casting technology,using PUR foam patterns.Foam casting variables such as pressure,mould temperature and metal pouring temperature were thoroughly investigated to define the most optimal casting conditions.The mechanical properties of the fabricated foams were measured in compression tests.A potential application for the foams considered is temporary bioresorbable bone implants,therefore the mechanical properties of the foams were compared with those of cancellous bone tissue.Foams with smaller pore size and lower porosity(20 PPI and 80%±87%)exhibited mechanical properties in the lower regions of the cancellous bone property range(Young’s modulus 36.5±77.5 MPa),while foams with higher pore size and porosity(10 PPI and~90%)were found to have insufficient compression strength(Young’s modulus 11.65±23.8),but thickening their walls and lowering their porosity below 90%yielded foams with Young’s modulus between 36.5 and 77.5 MPa.Foam fractures were also investigated to determine their collapse mechanism.A series of corrosion tests in stimulated body fluid was carried out to determine their applicability as a biomaterial.The Plasma Electrolytic Oxidation(PEO)process was used in a feasibility study to examine the microstructure and chemical composition of foams with protective coating.展开更多
基金supported by the National Natural Science Foundation of China (No 50704012)
文摘The quasi-static compressive mechanical behavior and deformation mechanism of closed-cell magnesium foams were studied, and the ef- fects of the density of magnesium foams on the compressive and energy absorption properties were also discussed. The results show that the compressive process of closed-cell magnesium foams is characterized by three deformation stages: linear elastic stage, collapsing stage and densification stage. At the linear elastic stage, the peak compressive strength (t70) and Young's modulus (E0) increase as the density increases Magnesium foams can absorb energy at the collapsing stage. In a certain strain range, the energy absorption capacity also increases as the density of magnesium foams increases.
基金Funded by the National Natural Science Foundation of China(No.51478370)the EPSRC-NSFC Joint Research Projec(No.51461135005)
文摘Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.
文摘High-porosity,open-cell AZ91 magnesium alloy foams of two pore sizes were fabricated by means of investment casting technology,using PUR foam patterns.Foam casting variables such as pressure,mould temperature and metal pouring temperature were thoroughly investigated to define the most optimal casting conditions.The mechanical properties of the fabricated foams were measured in compression tests.A potential application for the foams considered is temporary bioresorbable bone implants,therefore the mechanical properties of the foams were compared with those of cancellous bone tissue.Foams with smaller pore size and lower porosity(20 PPI and 80%±87%)exhibited mechanical properties in the lower regions of the cancellous bone property range(Young’s modulus 36.5±77.5 MPa),while foams with higher pore size and porosity(10 PPI and~90%)were found to have insufficient compression strength(Young’s modulus 11.65±23.8),but thickening their walls and lowering their porosity below 90%yielded foams with Young’s modulus between 36.5 and 77.5 MPa.Foam fractures were also investigated to determine their collapse mechanism.A series of corrosion tests in stimulated body fluid was carried out to determine their applicability as a biomaterial.The Plasma Electrolytic Oxidation(PEO)process was used in a feasibility study to examine the microstructure and chemical composition of foams with protective coating.