A chromium-free conversion coating treatment for magnesium by phytic acid solution was studied. The formation process of phytic acid conversion coating was studied through measuring the open circuit potential (OCP) an...A chromium-free conversion coating treatment for magnesium by phytic acid solution was studied. The formation process of phytic acid conversion coating was studied through measuring the open circuit potential (OCP) and weight change of the pure magnesium in the different conversion treatment time. The morphologies and compositions of the coatings were determined by SEM and EDS respectively. The conversion coating has the multideck structure with netlike morphology which is similar to the chromate conversion coating, and is mainly composed of Mg, P, O and C. The contents of C and P and the size of the cracks in different layers decrease from the external layer to the inner layer. The hydroxyl groups and phosphate carboxyl groups in the coating which have the similar properties to organic paintcoat are beneficial to the combination of substrate and organic paintcoat. The formation mechanism and thickness variation of the conversion coatings are also discussed.展开更多
The properties among of phytic acid conversion coatings,RE-phytic conversion coatings,rare earth conversion coatings and chromate conversion coatings were compared.The surface micrograph and the corrosion morphology o...The properties among of phytic acid conversion coatings,RE-phytic conversion coatings,rare earth conversion coatings and chromate conversion coatings were compared.The surface micrograph and the corrosion morphology of matrix and various coatings were observed,and the polarization curve,amount of hydrogen evolution and coating binding force were tested.The infrared spectra of phytic acid solution,phytic acid conversion coatings and RE-phytic conversion coatings were compared.The results indicated that the phytic acid coating and RE-phytic acid coating have better corrosion resistance and the RE-phytic acid coating is much better.The infrared spectra indicated that the characteristic peak of phytic acid conversion coatings shift left compared to that of phytic acid.The characteristic peak of RE-phytic conversion coating is similar with that of the phytic acid conversion coating.The di-hydrogen phosphate group of phytic acid reacted with metal matrix or rare earth conversion coating to generate hydrophosphate or phosphate.Phytic acid conversion coating consists of magnesium salt,aluminum salt,zinc salt and ferrous salt.The RE-phytic coating contains cerium salt besides those salts.展开更多
The purpose of the present work was to examine in vitro corrosion and bioactivity of surface phytic acid treatment AZ31 magnesium alloys. Untreated AZ31 magnesium alloys were used as control. The surface morphologies ...The purpose of the present work was to examine in vitro corrosion and bioactivity of surface phytic acid treatment AZ31 magnesium alloys. Untreated AZ31 magnesium alloys were used as control. The surface morphologies of magnesium alloys were observed by SEM. EDS was used to analyze the surface chemical elemental compositions and elemental concentration distribution. Corrosion properties were evaluated by electrochemical tests. Human osteosarcoma MG-63 cells were used to examine cell viability and proliferation. The results showed that surface phytic acid treatment resulted in a surface coating formation, which did not significantly improve the corrosion resistance of the alloys. The corrosion potential of AZ31 magnesium alloy positive shifted only about 0.04 V (from -1.50 V to -1.46 V);and the corrosion current decreased only 0.354 mA/cm2 (from 2.547 × 10-3 mA/cm2 to 2.193 × 10-3 mA/cm2). However, the cell analysis showed that this coating induced obviously higher MG-63 cell viability and proliferation, and displayed good surface bioactivity.展开更多
Recently, functional molecules such as Polydopamine(PDA), Hyaluronic Acid(HA) and heparin have been widely studied in the field of surface modification of magnesium(Mg) alloy stents for better degradation behavior and...Recently, functional molecules such as Polydopamine(PDA), Hyaluronic Acid(HA) and heparin have been widely studied in the field of surface modification of magnesium(Mg) alloy stents for better degradation behavior and biocompatibility, but their further application is limited by undesirable anticoagulant function, uncontrollable degradation and easy bleeding, respectively.Regarding to this consideration, a magnesium Fluoride/Polydopamine/Sulphonated hyaluronic acid(Mg F2/PDA/S-HA) composite coating was successfully prepared by applying S-HA with sulfur content of 9.71 wt% on the surface of ZE21B alloy in this study. The results showed that the composite coating with a unique mesh structure not only inherited the anticoagulant effect of sulfonic acid group and the excellent cyto-compatibility of S-HA with high sulfur content, but also significantly improved the corrosion performance of ZE21B alloy.These results indicate a great application potential of the composite coating in the field of cardiovascular biomaterials.展开更多
Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs the...Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs their barrier properties,resulting in rapid degradation of Mg alloys.The present study incorporates phytic acid(PA)as a healing agent in polycaprolactone(PCL)microcapsules with a unique honeycomb core matrix to obtain a self-healing PA-PCLcaps coating.The contact between simulated body fluid(SBF)and PA-PCLcaps coated ZM21 exhibited Cassie-Baxter interfacial states,resulting in significant hydrophobicity with a contact angle(CA)of 116.3.The corrosion potential(Ecorr)and current density(Icorr)were found to be-0.28 V and 1.1×10^(-9)A/cm^(2),respectively,for PA-PCLcaps coating,resulting in biosafe corrosion rate of 2.5×10^(-4)mm/year.After mechanical scratching,rapid HA mineralization at scratched regions recovered the hydrogen evolution rate(HER,0.36 mL/cm^(2)/day)and pH change(pH 7.10)of scratched PA-PCLcaps coated ZM21 samples to corresponding unscratched samples within one day of immersion.The coating’s self-healing ability could be attributed to PA released from punctured microcapsules,which facilitates HA chelation.The pH-triggered(pH 10)and Mg(II)-triggered(5 mM)conditions enhanced PA release from PA-PCLcaps coating by 2.5 and 3.1 times,respectively.As a result,dense HA mineralization occurred,which protects the coating from structural defects and ensures its durability in stimulating conditions.The findings of present study provide new insight for design of multiple stimuli-feedback based self-healing coatings on biodegradable Mg alloys.展开更多
文摘A chromium-free conversion coating treatment for magnesium by phytic acid solution was studied. The formation process of phytic acid conversion coating was studied through measuring the open circuit potential (OCP) and weight change of the pure magnesium in the different conversion treatment time. The morphologies and compositions of the coatings were determined by SEM and EDS respectively. The conversion coating has the multideck structure with netlike morphology which is similar to the chromate conversion coating, and is mainly composed of Mg, P, O and C. The contents of C and P and the size of the cracks in different layers decrease from the external layer to the inner layer. The hydroxyl groups and phosphate carboxyl groups in the coating which have the similar properties to organic paintcoat are beneficial to the combination of substrate and organic paintcoat. The formation mechanism and thickness variation of the conversion coatings are also discussed.
基金Funded by the Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education
文摘The properties among of phytic acid conversion coatings,RE-phytic conversion coatings,rare earth conversion coatings and chromate conversion coatings were compared.The surface micrograph and the corrosion morphology of matrix and various coatings were observed,and the polarization curve,amount of hydrogen evolution and coating binding force were tested.The infrared spectra of phytic acid solution,phytic acid conversion coatings and RE-phytic conversion coatings were compared.The results indicated that the phytic acid coating and RE-phytic acid coating have better corrosion resistance and the RE-phytic acid coating is much better.The infrared spectra indicated that the characteristic peak of phytic acid conversion coatings shift left compared to that of phytic acid.The characteristic peak of RE-phytic conversion coating is similar with that of the phytic acid conversion coating.The di-hydrogen phosphate group of phytic acid reacted with metal matrix or rare earth conversion coating to generate hydrophosphate or phosphate.Phytic acid conversion coating consists of magnesium salt,aluminum salt,zinc salt and ferrous salt.The RE-phytic coating contains cerium salt besides those salts.
文摘The purpose of the present work was to examine in vitro corrosion and bioactivity of surface phytic acid treatment AZ31 magnesium alloys. Untreated AZ31 magnesium alloys were used as control. The surface morphologies of magnesium alloys were observed by SEM. EDS was used to analyze the surface chemical elemental compositions and elemental concentration distribution. Corrosion properties were evaluated by electrochemical tests. Human osteosarcoma MG-63 cells were used to examine cell viability and proliferation. The results showed that surface phytic acid treatment resulted in a surface coating formation, which did not significantly improve the corrosion resistance of the alloys. The corrosion potential of AZ31 magnesium alloy positive shifted only about 0.04 V (from -1.50 V to -1.46 V);and the corrosion current decreased only 0.354 mA/cm2 (from 2.547 × 10-3 mA/cm2 to 2.193 × 10-3 mA/cm2). However, the cell analysis showed that this coating induced obviously higher MG-63 cell viability and proliferation, and displayed good surface bioactivity.
基金funded by the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)National Key Research and Development Program of China (2017YFB0702500, 2018YFC1106703, and 2016YFC1102403)Top Doctor Program of Zhengzhou University (grant number 32210475)。
文摘Recently, functional molecules such as Polydopamine(PDA), Hyaluronic Acid(HA) and heparin have been widely studied in the field of surface modification of magnesium(Mg) alloy stents for better degradation behavior and biocompatibility, but their further application is limited by undesirable anticoagulant function, uncontrollable degradation and easy bleeding, respectively.Regarding to this consideration, a magnesium Fluoride/Polydopamine/Sulphonated hyaluronic acid(Mg F2/PDA/S-HA) composite coating was successfully prepared by applying S-HA with sulfur content of 9.71 wt% on the surface of ZE21B alloy in this study. The results showed that the composite coating with a unique mesh structure not only inherited the anticoagulant effect of sulfonic acid group and the excellent cyto-compatibility of S-HA with high sulfur content, but also significantly improved the corrosion performance of ZE21B alloy.These results indicate a great application potential of the composite coating in the field of cardiovascular biomaterials.
文摘Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs their barrier properties,resulting in rapid degradation of Mg alloys.The present study incorporates phytic acid(PA)as a healing agent in polycaprolactone(PCL)microcapsules with a unique honeycomb core matrix to obtain a self-healing PA-PCLcaps coating.The contact between simulated body fluid(SBF)and PA-PCLcaps coated ZM21 exhibited Cassie-Baxter interfacial states,resulting in significant hydrophobicity with a contact angle(CA)of 116.3.The corrosion potential(Ecorr)and current density(Icorr)were found to be-0.28 V and 1.1×10^(-9)A/cm^(2),respectively,for PA-PCLcaps coating,resulting in biosafe corrosion rate of 2.5×10^(-4)mm/year.After mechanical scratching,rapid HA mineralization at scratched regions recovered the hydrogen evolution rate(HER,0.36 mL/cm^(2)/day)and pH change(pH 7.10)of scratched PA-PCLcaps coated ZM21 samples to corresponding unscratched samples within one day of immersion.The coating’s self-healing ability could be attributed to PA released from punctured microcapsules,which facilitates HA chelation.The pH-triggered(pH 10)and Mg(II)-triggered(5 mM)conditions enhanced PA release from PA-PCLcaps coating by 2.5 and 3.1 times,respectively.As a result,dense HA mineralization occurred,which protects the coating from structural defects and ensures its durability in stimulating conditions.The findings of present study provide new insight for design of multiple stimuli-feedback based self-healing coatings on biodegradable Mg alloys.