Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,adva...Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects.展开更多
Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in ...Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in bone reconstruction.We review the history of MBs and their excellent biocompatibility,biodegradability and osteopromotive properties,highlighting them as candidates for a new generation of biodegradable orthopedic implants.In particular,the results reported in the field-specific literature(280 articles)in recent decades are dissected with respect to the extensive variety of MBs for orthopedic applications,including Mg/Mg alloys,bioglasses,bioceramics,and polymer materials.We also summarize the osteogenic mechanism of MBs,including a detailed section on the physiological process,namely,the enhanced osteogenesis,promotion of osteoblast adhesion and motility,immunomodulation,and enhanced angiogenesis.Moreover,the merits and limitations of current bone grafts and substitutes are compared.The objective of this review is to reveal the strong potential of MBs for their use as agents in bone repair and regeneration and to highlight issues that impede their clinical translation.Finally,the development and challenges of MBs for transplanted orthopedic materials are discussed.展开更多
The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NC...The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed.展开更多
Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusio...Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusion,and commercial processing have limitations in manufacturing components with a complex shape/structure,and these processes may produce defects such as cavities and gas pores which can degrade the properties and usefulness of the products.Compared to conventional techniques,additive manufacturing(AM)can be used to precisely control the geometry of workpieces made of different Mg-based materials with multiple geometric scales and produce desirable medical products for orthopedics,dentistry,and other fields.However,a detailed and thorough understanding of the raw materials,manufacturing processes,properties,and applications is required to foster the production of commercial Mg-based biomedical components by AM.This review summarizes recent advances and important issues pertaining to AM of Mg-based biomedical products and discusses future development and application trends.展开更多
We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro- reactive fuel under high temperature gaseous atmosphere. The fuel studied in this paper contains 73% magnes...We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro- reactive fuel under high temperature gaseous atmosphere. The fuel studied in this paper contains 73% magnesium powders. An experimental system is designed and experiments are carried out in both argon and water vapor atmo- spheres. It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium, which indicates the molten state of magnesium particles in the burning surface of the fuel. Based on physical considerations and experimental results, a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel. The model enables the evaluation of the burning surface temperature, the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration. The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase, which are in agreement with the observed experimental trends.展开更多
The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)us...The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system.展开更多
Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinem...Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications.展开更多
Hydrogen holds the advantages of high energy density,great natural abundance and zero emission,making it suitable for large scale and long term energy storage,while its safe and efficient storage is still challenging....Hydrogen holds the advantages of high energy density,great natural abundance and zero emission,making it suitable for large scale and long term energy storage,while its safe and efficient storage is still challenging.Among various solid state hydrogen storage materials,MgH_(2) is promising for industrial applications due to its high gravimetric and volumetric hydrogen densities and the abundance of Mg on earth.However,the practical application of MgH_(2) has been limited by its stable thermodynamics and slow hydrogen desorption kinetics.Nanocatalysis is considered as a promising approach for improving the hydrogen storage performance of MgH_(2) and bringing it closer to the requirements of commercial applications.It is worth mentioning that the recently emerging two-dimensional material,MXene,has showcased exceptional catalytic abilities in modifying the hydrogen storage properties of MgH_(2).Besides,MXene possesses a high surface area,excellent chemical/physical stability,and negatively charged terminating groups,making it an ideal support for the"nanoconfinement"of MgH_(2) or highly active catalysts.Herein,we endeavor to provide a comprehensive overview of recent investigations on MXene-based catalysts and MXene supports for improving the hydrogen sorption properties of Mg/MgH_(2).The mechanisms of hydrogen sorption involved in Mg-MXene based composites are highlighted with special emphases on thermodynamics,kinetics,and catalytic behaviors.The aim of this work is to provide a comprehensive and objective review of researches on the development of high-performance catalysts/supports to improve hydrogen storage performances of Mg/MgH_(2) and to identify the opportunities and challenges for future applications.展开更多
Although Mg-based hydrides are extensively considered as a prospective material for solid-state hydrogen storage and clean energy carriers,their high operating temperature and slow kinetics are the main challenges for...Although Mg-based hydrides are extensively considered as a prospective material for solid-state hydrogen storage and clean energy carriers,their high operating temperature and slow kinetics are the main challenges for practical application.Here,a Mg-Ni based hydride,Mg_(2)NiH_(4) nanoparticles(~100 nm),with dual modification strategies of nanosizing and alloying is successfully prepared via a gas-solid preparation process.It is demonstrated that Mg_(2)NiH_(4) nanoparticles form a unique chain-like structure by oriented stacking and exhibit impressive hydrogen storage performance:it starts to release H2 at~170℃ and completes below 230℃ with a saturated capacity of 3.32 wt%and desorbs 3.14 wt% H_(2) within 1800 s at 200℃.The systematic characterizations of Mg_(2)NiH_(4) nanoparticles at different states reveal the dehydrogenation behavior and demonstrate the excellent structural and hydrogen storage stabilities during the de/hydrogenated process.This research is believed to provide new insights for optimizing the kinetic performance of metal hydrides and novel perspectives for designing highly active and stable hydrogen storage alloys.展开更多
Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as w...Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.展开更多
Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic...Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.展开更多
Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviou...Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviour of magnesium-zinc/hydroxyapatite(Mg-Zn/HA)composites fabricated by different powder mixing techniques.A single step mixing process involved mechanical alloying or mechanical milling techniques,while double step processing involved a combination of both mechanical alloying and mechanical milling.Optimum mechanical properties of the composite were observed when the powders were prepared using single step processing via mechanical alloying technique.However,Mg-Zn/HA composite fabricated through single step processing via mechanical milling technique was found to have the most desirable low degradation rate coupled with highest bioactivity.The composite achieved the lowest degradation rate of 0.039×10^−3 mm/year as measured by immersion test and 0.0230 mm/year as measured by electrochemical polarization.Ca:P ratio of the composite also slightly more than enough to aid the initial bone mineralization,that is 1:1.76,as the required Ca:P ratio for initial bone mineralization is between 1:1 and 1:1.67.展开更多
Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of ...Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.展开更多
This study investigates the effect of graphene oxide(GO)on the mechanical and corrosion behavior,antibacterial performance,and cell response of Mg–Zn–Mn(MZM)nanocomposite.MZM/GO nanocomposites with different amounts...This study investigates the effect of graphene oxide(GO)on the mechanical and corrosion behavior,antibacterial performance,and cell response of Mg–Zn–Mn(MZM)nanocomposite.MZM/GO nanocomposites with different amounts of GO(i.e.,0.5 wt%,1.0 wt%,and1.5 wt%)were fabricated by the semi-powder metallurgy method.The influence of GO on the MZM nanocomposite was analyzed through the hardness,compressive,corrosion,antibacterial,and cytotoxicity tests.The experimental results showed that,with the increase in the amount of GO(0.5 wt%and 1.5 wt%),the hardness value,compressive strength,and antibacterial performance of the MZM nanocomposite increased,whereas the cell viability and osteogenesis level decreased after the addition of 1.5 wt%GO.Moreover,the electrochemical examination results showed that the corrosion behavior of the MZM alloy was significantly enhanced after encapsulation in 0.5 wt%GO.In summary,MZM nanocomposites reinforced with GO can be used for implant applications because of their antibacterial performance and mechanical property.展开更多
The experimental data in the MgH2-5at%V composite was summarized and used to investigate the kinetic mechanism of hydrogen absorption and desorption using a new model. The research results indicate that a coincidence ...The experimental data in the MgH2-5at%V composite was summarized and used to investigate the kinetic mechanism of hydrogen absorption and desorption using a new model. The research results indicate that a coincidence of the theoretical calculation values with the experimental data has been reached and the rate-limiting step is hydrogen diffusion through the hydride phase (β phase) with the activation energy of 47.2 kJ per mole H2 for absorption and the diffusion of hydrogen in the a solid solution (α phase) with that of 59.1 kJ per mole H2 for desorption. In addition, the hydriding rate of the MgH2-V composite is 2.9 times faster than that of MgH2 powders when compared with their characteristic absorption time directly.展开更多
The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecy...The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample.展开更多
Rare earth elements and transition metals have been found to improve the hydrogen storage characteristics of magnesium-based alloys.This study investigated the Mg-Ho-Fe(MHF) ternary alloy prepared using the vacuum ind...Rare earth elements and transition metals have been found to improve the hydrogen storage characteristics of magnesium-based alloys.This study investigated the Mg-Ho-Fe(MHF) ternary alloy prepared using the vacuum induction melting technique.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),pressure-composition-temperature(PCT),and differential scanning calorimetry(DSC) were used to analyze the alloy's phase transitions,microstructure,thermodynamics,and kinetic properties.The results reveal that the Mg_(98)Ho_(1.5)Fe_(0.5) alloy forms a solid solution with Ho and Fe in the magnesium matrix.Upon hydrogen absorption,the activated alloy transforms into a mixture of Mg/MgH_(2) phases and nanoscale HoH_(2) phases.Notably,only the MgH_(2) phase decomposes during hydrogen desorption,while the HoH_(2) phase remains unchanged,exhibiting a positive catalytic effect.The alloy demonstrates excellent hydrogen absorption kinetics,achieving a capacity of 5.56 wt% H_(2) within 10 min at 360℃,owing to the combined catalytic effects of Ho and Fe.The activation energy for hydrogen desorption is found to be 135.87 kJ/mol,which is lower than that of the activation energies of pure MgH_(2) and MgFe alloys,indicating an enhancement in desorption kinetics.Moreover,the enthalpy and entropy changes for hydrogen absorption and desorption are determined to be-70.51 kJ/mol H_(2),-125.62 J/(K·mol) H_(2),72.83 kJ/mol H_(2),and 128.95 J/(K·mol) H_(2),respectively.Furthermore,it is worth noting that the thermodynamic properties of the alloy are improved due to the catalytic effect of Ho and Fe.展开更多
Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects,substantial tumor recurrence,and long-lasting bone reconstruction post tumor resection.Magnesium and...Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects,substantial tumor recurrence,and long-lasting bone reconstruction post tumor resection.Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices.Here,by deposition of calcium-based bilayer coating on the surface,a Mg-based composite implant platform is developed with tailored degradation characteristics,simultaneously integrated with chemotherapeutic(Taxol)loading capacity.The delicate modulation of Mg degradation occurring in aqueous environment is observed to play dual roles,not only in eliciting desirable osteoinductivity,but allows for modification of tumor microenvironment(TME)owing to the continuous release of degradation products.Specifically,the sustainable H2 evolution and Ca2+from the implant is distinguished to cooperate with local Taxol delivery to achieve superior antineoplastic activity through activating Cyt-c pathway to induce mitochondrial dysfunction,which in turn leads to significant tumor-growth inhibition in vivo.In addition,the local chemotherapeutic delivery of the implant minimizes toxicity and side effects,but markedly fosters osteogenesis and bone repair with appropriate structure degradation in rat femoral defect model.Taken together,a promising intraosseous administration strategy with biodegradable Mg-based implants to facilitate tumor-associated bone defect is proposed.展开更多
Mg-based alloys must be dehydrogenated at high pressure and temperatures, limiting their practical application. In this paper, Nd_(5)Mg_(41)Ni alloy was prepared by vacuum melting, and the as-cast alloy was ball mille...Mg-based alloys must be dehydrogenated at high pressure and temperatures, limiting their practical application. In this paper, Nd_(5)Mg_(41)Ni alloy was prepared by vacuum melting, and the as-cast alloy was ball milled for 5 h, 10 h, 15 h, and 20 h. The effect of ball milling time on the microstructure and hydrogen storage properties of the alloy was systematically studied. The alloy comprises Nd_(5)Mg_(41), NdMg_(12), NdMg_(3), and Mg_(2)Ni phases. The Nd_(5)Mg_(41)Ni alloy milling for 10 h can reach 95% of the saturated hydrogen absorption at 553 K by 40 s, and the alloy can desorb hydrogen only by 20 min. The dehydrogenation activation energy is only 99.9 kJ/mol H_(2). Ball milling makes the alloy produce many nanocrystalline and amorphous structures. The nano-grain boundary provides a channel for the diffusion of hydrogen atoms, and the high energy at the grain boundary provides energy for the phase deformation nucleus. Ball milling leads to the refinement of alloy particles and shortens the diffusion distance of hydrogen atoms to the interior of alloy particles. Defects such as twins and dislocations generated by milling provide energy for the phase deformation nucleus during the hydrogen absorption and desorption.展开更多
Magnesium and magnesium-based alloy hydrides remain attractive hydrogen storage materials owing to high hydrogen capacity and rich reserves in the earth's crust. A high stability of hydride and sluggish hydriding/deh...Magnesium and magnesium-based alloy hydrides remain attractive hydrogen storage materials owing to high hydrogen capacity and rich reserves in the earth's crust. A high stability of hydride and sluggish hydriding/dehydriding kinetics at practical temperatures for the materials drove researchers into alloying with other elements, using different preparation techniques, using catalyst and thin film hydride to improve the hydrogen absorption/desorption properties. In this review, the development of these approaches and their effects on the thermodynamic and kinetics properties of magnesium and magnesium-based alloy hydrides were descript in details.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.82202672)the Key Research and Development Program of Anhui Province(No.2022e07020017)+5 种基金China Postdoctoral Science Foundation Grant(2022M723049)the National Postdoctoral Program for Innovative Talents(BX20230350)Research Funds of Centre for Leading Medicine and Advanced Technologies of IHM(No.2023IHM02007)the Foundation of National Center for Translational Medicine(Shanghai)SHU Branch(No.SUITM-202301)Anhui Provincial Research Preparation Plan(2022AH040074),Natural science fund for colleges and universities in Anhui Proxince(2023AH053289)Research Fund of Anhui Institute of translational medicine(2022zhyx-C32).
文摘Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects.
基金financial support from the National Natural Science Foundation of China(No.81672230)the Natural Science Foundation of Chongqing(No.cstc2020jcyjmsxm2234)+1 种基金the Top-notch Young Talent Project of Chongqing Traditional Chinese Medicine Hospital(No.CQSZYY2020008)the Chongqing Graduate Research Innovation Project(No.CYS20199)。
文摘Magnesium(Mg)is the fourth most abundant element in the human body and is important in terms of specific osteogenesis functions.Here,we provide a comprehensive review of the use of magnesium-based biomaterials(MBs)in bone reconstruction.We review the history of MBs and their excellent biocompatibility,biodegradability and osteopromotive properties,highlighting them as candidates for a new generation of biodegradable orthopedic implants.In particular,the results reported in the field-specific literature(280 articles)in recent decades are dissected with respect to the extensive variety of MBs for orthopedic applications,including Mg/Mg alloys,bioglasses,bioceramics,and polymer materials.We also summarize the osteogenic mechanism of MBs,including a detailed section on the physiological process,namely,the enhanced osteogenesis,promotion of osteoblast adhesion and motility,immunomodulation,and enhanced angiogenesis.Moreover,the merits and limitations of current bone grafts and substitutes are compared.The objective of this review is to reveal the strong potential of MBs for their use as agents in bone repair and regeneration and to highlight issues that impede their clinical translation.Finally,the development and challenges of MBs for transplanted orthopedic materials are discussed.
基金H.R.Bakhsheshi-Rad and S.Sharif would like to acknowledge UTM Research Management for the financial support through the funding(Q.J130000.2409.08G37).
文摘The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed.
基金This work was financially supported by the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120078,2021A1515111140,and 2021B1515120059)National Key Research and Development Project of China(No.2020YFC1107202)+3 种基金Science Research Cultivation Program(PY2022002)Science and Technology Planning Project of Guangzhou(No.202206010030)City University of Hong Kong Donation Research Grants[DONRMG No.9229021 and 9220061]as well as City University of Hong Kong Strategic Research Grant[SRG 7005505].
文摘Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusion,and commercial processing have limitations in manufacturing components with a complex shape/structure,and these processes may produce defects such as cavities and gas pores which can degrade the properties and usefulness of the products.Compared to conventional techniques,additive manufacturing(AM)can be used to precisely control the geometry of workpieces made of different Mg-based materials with multiple geometric scales and produce desirable medical products for orthopedics,dentistry,and other fields.However,a detailed and thorough understanding of the raw materials,manufacturing processes,properties,and applications is required to foster the production of commercial Mg-based biomedical components by AM.This review summarizes recent advances and important issues pertaining to AM of Mg-based biomedical products and discusses future development and application trends.
基金Project supported by the Young Scientist Fund of the National Natural Science Foundation of China(Grant No.51006118)
文摘We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro- reactive fuel under high temperature gaseous atmosphere. The fuel studied in this paper contains 73% magnesium powders. An experimental system is designed and experiments are carried out in both argon and water vapor atmo- spheres. It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium, which indicates the molten state of magnesium particles in the burning surface of the fuel. Based on physical considerations and experimental results, a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel. The model enables the evaluation of the burning surface temperature, the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration. The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase, which are in agreement with the observed experimental trends.
基金supported by the National Science Centre of Poland within OPUS 16 Project,no.2018/31/B/ST8/01172。
文摘The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system.
基金supported by the University Malaya(Grant code:FRGS/1/2022/TK10/UM/02/6)the National Natural Science Foundation of China(Grant No.51275414,No.51605387)Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number RGP.2/303/44。
文摘Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications.
基金the support from the National Natural Science Foundation(No.52171186)National Key Research&Development Program(2022YFB3803700)of China.
文摘Hydrogen holds the advantages of high energy density,great natural abundance and zero emission,making it suitable for large scale and long term energy storage,while its safe and efficient storage is still challenging.Among various solid state hydrogen storage materials,MgH_(2) is promising for industrial applications due to its high gravimetric and volumetric hydrogen densities and the abundance of Mg on earth.However,the practical application of MgH_(2) has been limited by its stable thermodynamics and slow hydrogen desorption kinetics.Nanocatalysis is considered as a promising approach for improving the hydrogen storage performance of MgH_(2) and bringing it closer to the requirements of commercial applications.It is worth mentioning that the recently emerging two-dimensional material,MXene,has showcased exceptional catalytic abilities in modifying the hydrogen storage properties of MgH_(2).Besides,MXene possesses a high surface area,excellent chemical/physical stability,and negatively charged terminating groups,making it an ideal support for the"nanoconfinement"of MgH_(2) or highly active catalysts.Herein,we endeavor to provide a comprehensive overview of recent investigations on MXene-based catalysts and MXene supports for improving the hydrogen sorption properties of Mg/MgH_(2).The mechanisms of hydrogen sorption involved in Mg-MXene based composites are highlighted with special emphases on thermodynamics,kinetics,and catalytic behaviors.The aim of this work is to provide a comprehensive and objective review of researches on the development of high-performance catalysts/supports to improve hydrogen storage performances of Mg/MgH_(2) and to identify the opportunities and challenges for future applications.
基金supported by the National Key R&D Program of China(No.2022YFB3803801)National Natural Science Foundation of China(52071177,21975125 and 52171214)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Although Mg-based hydrides are extensively considered as a prospective material for solid-state hydrogen storage and clean energy carriers,their high operating temperature and slow kinetics are the main challenges for practical application.Here,a Mg-Ni based hydride,Mg_(2)NiH_(4) nanoparticles(~100 nm),with dual modification strategies of nanosizing and alloying is successfully prepared via a gas-solid preparation process.It is demonstrated that Mg_(2)NiH_(4) nanoparticles form a unique chain-like structure by oriented stacking and exhibit impressive hydrogen storage performance:it starts to release H2 at~170℃ and completes below 230℃ with a saturated capacity of 3.32 wt%and desorbs 3.14 wt% H_(2) within 1800 s at 200℃.The systematic characterizations of Mg_(2)NiH_(4) nanoparticles at different states reveal the dehydrogenation behavior and demonstrate the excellent structural and hydrogen storage stabilities during the de/hydrogenated process.This research is believed to provide new insights for optimizing the kinetic performance of metal hydrides and novel perspectives for designing highly active and stable hydrogen storage alloys.
文摘Over the last decade’s magnesium and magnesium based compounds have been intensively investigated as potential hydrogen storage as well as thermal energy storage materials due to their abundance and availability as well as their extraordinary high gravimetric and volumetric storage densities.This review work provides a broad overview of the most appealing systems and of their hydrogenation/dehydrogenation properties.Special emphasis is placed on reviewing the efforts made by the scientific community in improving the material’s thermodynamic and kinetic properties while maintaining a high hydrogen storage capacity.
基金supported by the Chongqing Special Key Project of Technology Innovation and Application Development,China(cstc2019jscx-dxwt B0029)the National Natural Science Foundation of China(51871143)+5 种基金the Science and Technology Committee of Shanghai(19010500400)the Shanghai Rising-Star Program(21QA1403200)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2019jcyj-msxm X0306)the Start-up Funds of Chongqing University(02110011044171)the Senior Talent Start-up Funds of Jiangsu University(4111310024)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2021M11)
文摘Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.
基金The authors would like thank to Universiti Sains Malaysia for FRGS Grant No.203/PBAHAN/6071386 and financial scholarship from Ministry of Higher Education of Malaysia.
文摘Magnesium-based biomaterials have recently gained great attention as promising candidates for the new generation of biodegradable implants.This study investigated the mechanical performance and biodegradation behaviour of magnesium-zinc/hydroxyapatite(Mg-Zn/HA)composites fabricated by different powder mixing techniques.A single step mixing process involved mechanical alloying or mechanical milling techniques,while double step processing involved a combination of both mechanical alloying and mechanical milling.Optimum mechanical properties of the composite were observed when the powders were prepared using single step processing via mechanical alloying technique.However,Mg-Zn/HA composite fabricated through single step processing via mechanical milling technique was found to have the most desirable low degradation rate coupled with highest bioactivity.The composite achieved the lowest degradation rate of 0.039×10^−3 mm/year as measured by immersion test and 0.0230 mm/year as measured by electrochemical polarization.Ca:P ratio of the composite also slightly more than enough to aid the initial bone mineralization,that is 1:1.76,as the required Ca:P ratio for initial bone mineralization is between 1:1 and 1:1.67.
基金financially supported by the research programs of the National Natural Science Foundation of China (No. 52101274)the Natural Science Foundation of Shandong Province, China (No. ZR2020QE011)the Youth Top Talent Foundation of Yantai University, China (No. 2219008)
文摘Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.
文摘This study investigates the effect of graphene oxide(GO)on the mechanical and corrosion behavior,antibacterial performance,and cell response of Mg–Zn–Mn(MZM)nanocomposite.MZM/GO nanocomposites with different amounts of GO(i.e.,0.5 wt%,1.0 wt%,and1.5 wt%)were fabricated by the semi-powder metallurgy method.The influence of GO on the MZM nanocomposite was analyzed through the hardness,compressive,corrosion,antibacterial,and cytotoxicity tests.The experimental results showed that,with the increase in the amount of GO(0.5 wt%and 1.5 wt%),the hardness value,compressive strength,and antibacterial performance of the MZM nanocomposite increased,whereas the cell viability and osteogenesis level decreased after the addition of 1.5 wt%GO.Moreover,the electrochemical examination results showed that the corrosion behavior of the MZM alloy was significantly enhanced after encapsulation in 0.5 wt%GO.In summary,MZM nanocomposites reinforced with GO can be used for implant applications because of their antibacterial performance and mechanical property.
基金This project was financially supported by the Science and Technology Committee of Shanghai (No.0452NM002), China Postdoctoral Science Foundation (No.2004036009), and Shanghai Postdoctoral Science Foundation (No.04R214120).
文摘The experimental data in the MgH2-5at%V composite was summarized and used to investigate the kinetic mechanism of hydrogen absorption and desorption using a new model. The research results indicate that a coincidence of the theoretical calculation values with the experimental data has been reached and the rate-limiting step is hydrogen diffusion through the hydride phase (β phase) with the activation energy of 47.2 kJ per mole H2 for absorption and the diffusion of hydrogen in the a solid solution (α phase) with that of 59.1 kJ per mole H2 for desorption. In addition, the hydriding rate of the MgH2-V composite is 2.9 times faster than that of MgH2 powders when compared with their characteristic absorption time directly.
基金the Fundamental Research Funds for the National Natural Science Foundation of China (Nos. 52101123 and 52004227)the Fundamental Research Funds for the Central Universities-Interdisciplinary Research (No. 2682021ZTPY001)the Dongguan Scitech Commissioner (No. 20211800500102)
文摘The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample.
基金Project supported by the Fundamental Research Program of Shanxi Province (202203021211193,202203021211190)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2022L291,2022L274)+1 种基金the National Natural Science Foundation of China (51761032,51871125,52071227)the Key Scientific Research Project in Shanxi Province(202102050201003)。
文摘Rare earth elements and transition metals have been found to improve the hydrogen storage characteristics of magnesium-based alloys.This study investigated the Mg-Ho-Fe(MHF) ternary alloy prepared using the vacuum induction melting technique.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),pressure-composition-temperature(PCT),and differential scanning calorimetry(DSC) were used to analyze the alloy's phase transitions,microstructure,thermodynamics,and kinetic properties.The results reveal that the Mg_(98)Ho_(1.5)Fe_(0.5) alloy forms a solid solution with Ho and Fe in the magnesium matrix.Upon hydrogen absorption,the activated alloy transforms into a mixture of Mg/MgH_(2) phases and nanoscale HoH_(2) phases.Notably,only the MgH_(2) phase decomposes during hydrogen desorption,while the HoH_(2) phase remains unchanged,exhibiting a positive catalytic effect.The alloy demonstrates excellent hydrogen absorption kinetics,achieving a capacity of 5.56 wt% H_(2) within 10 min at 360℃,owing to the combined catalytic effects of Ho and Fe.The activation energy for hydrogen desorption is found to be 135.87 kJ/mol,which is lower than that of the activation energies of pure MgH_(2) and MgFe alloys,indicating an enhancement in desorption kinetics.Moreover,the enthalpy and entropy changes for hydrogen absorption and desorption are determined to be-70.51 kJ/mol H_(2),-125.62 J/(K·mol) H_(2),72.83 kJ/mol H_(2),and 128.95 J/(K·mol) H_(2),respectively.Furthermore,it is worth noting that the thermodynamic properties of the alloy are improved due to the catalytic effect of Ho and Fe.
基金supported by the National Key Research&Development Program of China(2021YFE0204900)the National Natural Science Foundation of China(52222108)Science and Technology Commission of Shanghai Municipality(22ZR1432000,23JC1402400).
文摘Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects,substantial tumor recurrence,and long-lasting bone reconstruction post tumor resection.Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices.Here,by deposition of calcium-based bilayer coating on the surface,a Mg-based composite implant platform is developed with tailored degradation characteristics,simultaneously integrated with chemotherapeutic(Taxol)loading capacity.The delicate modulation of Mg degradation occurring in aqueous environment is observed to play dual roles,not only in eliciting desirable osteoinductivity,but allows for modification of tumor microenvironment(TME)owing to the continuous release of degradation products.Specifically,the sustainable H2 evolution and Ca2+from the implant is distinguished to cooperate with local Taxol delivery to achieve superior antineoplastic activity through activating Cyt-c pathway to induce mitochondrial dysfunction,which in turn leads to significant tumor-growth inhibition in vivo.In addition,the local chemotherapeutic delivery of the implant minimizes toxicity and side effects,but markedly fosters osteogenesis and bone repair with appropriate structure degradation in rat femoral defect model.Taken together,a promising intraosseous administration strategy with biodegradable Mg-based implants to facilitate tumor-associated bone defect is proposed.
基金supported by the Program for the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NJYT24006)the National Natural Science Foundation of China(Nos.51901105 and 51871125)+1 种基金the Natural Science Foundation of Inner Mongolia,China(Nos.2019BS05005 and 2021MS05064)the Inner Mongolia University of Science and Technology Innovation Fund(No.2019QDL-B11).
文摘Mg-based alloys must be dehydrogenated at high pressure and temperatures, limiting their practical application. In this paper, Nd_(5)Mg_(41)Ni alloy was prepared by vacuum melting, and the as-cast alloy was ball milled for 5 h, 10 h, 15 h, and 20 h. The effect of ball milling time on the microstructure and hydrogen storage properties of the alloy was systematically studied. The alloy comprises Nd_(5)Mg_(41), NdMg_(12), NdMg_(3), and Mg_(2)Ni phases. The Nd_(5)Mg_(41)Ni alloy milling for 10 h can reach 95% of the saturated hydrogen absorption at 553 K by 40 s, and the alloy can desorb hydrogen only by 20 min. The dehydrogenation activation energy is only 99.9 kJ/mol H_(2). Ball milling makes the alloy produce many nanocrystalline and amorphous structures. The nano-grain boundary provides a channel for the diffusion of hydrogen atoms, and the high energy at the grain boundary provides energy for the phase deformation nucleus. Ball milling leads to the refinement of alloy particles and shortens the diffusion distance of hydrogen atoms to the interior of alloy particles. Defects such as twins and dislocations generated by milling provide energy for the phase deformation nucleus during the hydrogen absorption and desorption.
基金financially supported by the National Natural Science Foundation of China (Nos. 51161015 and 51371094)
文摘Magnesium and magnesium-based alloy hydrides remain attractive hydrogen storage materials owing to high hydrogen capacity and rich reserves in the earth's crust. A high stability of hydride and sluggish hydriding/dehydriding kinetics at practical temperatures for the materials drove researchers into alloying with other elements, using different preparation techniques, using catalyst and thin film hydride to improve the hydrogen absorption/desorption properties. In this review, the development of these approaches and their effects on the thermodynamic and kinetics properties of magnesium and magnesium-based alloy hydrides were descript in details.