The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks ha...The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks have shown the results from that system are highly accurate and reliable. The system can be an accuracy and cost-effective tool to prevent the potential buckling and break of CWR rails. The physical backgrounds and features of the system are represented in this paper. The Darwin-Alice Springs Line is a newly constructed main line in Australia which is linked from the north and middle of Australia. Originally, this rail line is designed and constructed in a "cost-effective" way to a lower price, and the key parameters are relatively low. To maintain the stability of the CWR tracks in a very harsh environment, some new technologies such as the MBN technology were utilised. From the results of neutral temperature, it is found that the majority of them are very high. Combined with the calculation and finite element analysis, these problems evidenced that it is caused by the low toe load fastening system and high sleeper spacing. After that some suggestions are given to improve the stability of the CWR on the railway line.展开更多
Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball s...Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball scribing, root mean square of MBN (MBNrms) of CGO electrical steel increased 9.8% with 4 mm scribing spacing at 1.2 T, and that of HGO electrical steel apparently decreased 17.3% with 16 mm scribing spacing at 1.2 T. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress, primary magnetic domain space of grain-oriented electrical steel becomes smaller, which reflects as a variation of MBN in the macroscopic magnetic properties. Through correlation formula derivation of MBNrms and equilibrium distance between domain walls, effect of domain refinement on grain-oriented electrical steel was also interpreted, and optimum equilibrium distance between domain walls was determined.展开更多
<span style="font-family:Verdana;">In Nigeria, most welding activities are carried out by road side welders, majority of this welders are ignorant of weld residual stress and its adverse effect on weld...<span style="font-family:Verdana;">In Nigeria, most welding activities are carried out by road side welders, majority of this welders are ignorant of weld residual stress and its adverse effect on weldment. Residual stress (RS) measuring device </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> vital in the measurement of inherent stresses in material. The aim of this research was to employ proof of principle in analyzing the weld residual stresses in a material. This was achieved by measuring samples with magnetic residual stress device and then subjecting the weld samples to mechanical tensile test with hope that materials with more residual stresses fail first. Finally the result from both procedures w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> compared to establish </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">relationship</span><span style="font-family:""><span style="font-family:Verdana;">. Four (4) pieces of mild steel coupons measuring 100 × 40 × 3 mm were welded, producing two specimens, A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> of 200 × 40 × 3 mm</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> respectively. The specimens were measured using the Magnetic device developed and 37 signals were obtained per specimen, thereafter, the welded specimens were subjected to tensile testing and results analyzed. From the results obtained, Specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> was observed to have the highest signal peak at the weld zone with RS signal of 20.3983 mV compared to B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> with 19.358 mV. While under tensile loading, it took 1.63 kN to cause failure to specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and 8.65 kN for specimen B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;">. From this simple experiment, it implies that the Magnetic RS device was able to mimic the behavior of residual stress and also predicted that A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> would fail first.展开更多
文摘The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks have shown the results from that system are highly accurate and reliable. The system can be an accuracy and cost-effective tool to prevent the potential buckling and break of CWR rails. The physical backgrounds and features of the system are represented in this paper. The Darwin-Alice Springs Line is a newly constructed main line in Australia which is linked from the north and middle of Australia. Originally, this rail line is designed and constructed in a "cost-effective" way to a lower price, and the key parameters are relatively low. To maintain the stability of the CWR tracks in a very harsh environment, some new technologies such as the MBN technology were utilised. From the results of neutral temperature, it is found that the majority of them are very high. Combined with the calculation and finite element analysis, these problems evidenced that it is caused by the low toe load fastening system and high sleeper spacing. After that some suggestions are given to improve the stability of the CWR on the railway line.
基金The financial support of the National Natural Science Foundation of China(Nos.51174057 and 51274062)the National High Technology Research and Development Program (No.2012AA03A503)
文摘Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball scribing, root mean square of MBN (MBNrms) of CGO electrical steel increased 9.8% with 4 mm scribing spacing at 1.2 T, and that of HGO electrical steel apparently decreased 17.3% with 16 mm scribing spacing at 1.2 T. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress, primary magnetic domain space of grain-oriented electrical steel becomes smaller, which reflects as a variation of MBN in the macroscopic magnetic properties. Through correlation formula derivation of MBNrms and equilibrium distance between domain walls, effect of domain refinement on grain-oriented electrical steel was also interpreted, and optimum equilibrium distance between domain walls was determined.
文摘<span style="font-family:Verdana;">In Nigeria, most welding activities are carried out by road side welders, majority of this welders are ignorant of weld residual stress and its adverse effect on weldment. Residual stress (RS) measuring device </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> vital in the measurement of inherent stresses in material. The aim of this research was to employ proof of principle in analyzing the weld residual stresses in a material. This was achieved by measuring samples with magnetic residual stress device and then subjecting the weld samples to mechanical tensile test with hope that materials with more residual stresses fail first. Finally the result from both procedures w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> compared to establish </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">relationship</span><span style="font-family:""><span style="font-family:Verdana;">. Four (4) pieces of mild steel coupons measuring 100 × 40 × 3 mm were welded, producing two specimens, A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> of 200 × 40 × 3 mm</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> respectively. The specimens were measured using the Magnetic device developed and 37 signals were obtained per specimen, thereafter, the welded specimens were subjected to tensile testing and results analyzed. From the results obtained, Specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> was observed to have the highest signal peak at the weld zone with RS signal of 20.3983 mV compared to B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> with 19.358 mV. While under tensile loading, it took 1.63 kN to cause failure to specimen A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> and 8.65 kN for specimen B</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;">. From this simple experiment, it implies that the Magnetic RS device was able to mimic the behavior of residual stress and also predicted that A</span><sub><span style="font-family:Verdana;">11</span></sub><span style="font-family:Verdana;"> would fail first.