Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of...Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.展开更多
BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy.Although cognitive impairments tend to be overlooked in patients with diabetes mellitus(DM),there is a growing body of evidence linking ...BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy.Although cognitive impairments tend to be overlooked in patients with diabetes mellitus(DM),there is a growing body of evidence linking DM to cognitive dysfunction.Hyperglycemia is closely related to neurological abnormalities,while often disregarded in clinical practice.Changes in cerebral neurotransmitter levels are associated with a variety of neurological abnormalities and may be closely related to blood glucose control in patients with type 2 DM(T2DM).AIM To evaluate the concentrations of cerebral neurotransmitters in T2DM patients exhibiting different hemoglobin A1c(HbA1c)levels.METHODS A total of 130 T2DM patients were enrolled at the Department of Endocrinology of Shanghai East Hospital.The participants were divided into four groups according to their HbA1c levels using the interquartile method,namely Q1(<7.875%),Q2(7.875%-9.050%),Q3(9.050%-11.200%)and Q4(≥11.200%).Clinical data were collected and measured,including age,height,weight,neck/waist/hip circumferences,blood pressure,comorbidities,duration of DM,and biochemical indicators.Meanwhile,neurotransmitters in the left hippocampus and left brainstem area were detected by proton magnetic resonance spectroscopy.RESULTS The HbA1c level was significantly associated with urinary microalbumin(mALB),triglyceride,low-density lipoprotein cholesterol(LDL-C),homeostasis model assessment of insulin resistance(HOMA-IR),and beta cell function(HOMA-β),N-acetylaspartate/creatine(NAA/Cr),and NAA/choline(NAA/Cho).Spearman correlation analysis showed that mALB,LDL-C,HOMA-IR and NAA/Cr in the left brainstem area were positively correlated with the level of HbA1c(P<0.05),whereas HOMA-βwas negatively correlated with the HbA1c level(P<0.05).Ordered multiple logistic regression analysis showed that NAA/Cho[Odds ratio(OR):1.608,95%confidence interval(95%CI):1.004-2.578,P<0.05],LDL-C(OR:1.627,95%CI:1.119-2.370,P<0.05),and HOMA-IR(OR:1.107,95%CI:1.031-1.188,P<0.01)were independent predictors of poor glycemic control.CONCLUSION The cerebral neurotransmitter concentrations in the left brainstem area in patients with T2DM are closely related to glycemic control,which may be the basis for the changes in cognitive function in diabetic patients.展开更多
The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterif...The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterification of citric acid and n-butanol.γ-Aminopropyltriethoxysilane(APTES)was first grafted on the TS-1 zeolite via the condensation reactions with surface hydroxyl groups,and subsequently the HPW was immobilized via the reaction between the amino groups and the protons from HPW-forming strong ionic bonding.The Keggin structure of HPW and MFI topology of TS-1 zeolite were well maintained after the modifications.The amino-functionalization generated abundant uniformly distributed active sites on TS-1 for HPW immobilization,which promoted the dispersity,abundance,as well as the stability of the acid sites.The tetrahedrally coordinated framework titanium and non-framework titania behaved as weak Lewis acid sites,and the protons from the immobilized HPW acted as the moderate or strong Brønsted acid sites.An optimized TBC yield of 96.2%(mol)with a conversion of-COOH of 98.1%(mol)was achieved at 150℃for 6 h over the HPW immobilized on amino-functionalized TS-1.The catalyst exhibited good stability after four consecutive reaction runs,where the activity leveled off at still a relatively high level after somewhat deactivation possibly caused by the leaching of a small portion of weakly anchored APTES or HPW.展开更多
BACKGROUND Neoadjuvant chemotherapy can cause hepatic sinusoidal obstruction syndrome(SOS)in patients with colorectal cancer liver metastases and increases posto-perative morbidity and mortality.AIM To evaluate T1 map...BACKGROUND Neoadjuvant chemotherapy can cause hepatic sinusoidal obstruction syndrome(SOS)in patients with colorectal cancer liver metastases and increases posto-perative morbidity and mortality.AIM To evaluate T1 mapping based on gadoxetic acid-enhanced magnetic resonance imaging(MRI)for diagnosis of hepatic SOS induced by monocrotaline.METHODS Twenty-four mice were divided into control(n=10)and experimental(n=14)groups.The experimental groups were injected with monocrotaline 2 or 6 days before MRI.MRI parameters were:T1 relaxation time before enhancement;T1 relaxation time 20 minutes after enhancement(T_(1post));a reduction in T1 relaxation time(△T_(1)%);and first enhancement slope percentage of the liver parenchyma(ESP).Albumin and bilirubin score was determined.Histological results served as a reference.Liver parenchyma samples from the control and experimental groups were analyzed by western blotting,and organic anion transporter polypeptide 1(OATP1)was measured.RESULTS T_(1post),△T_(1)%,and ESP of the liver parenchyma were significantly different between two groups(all P<0.001)and significantly correlated with the total histological score of hepatic SOS(r=-0.70,0.68 and 0.79;P<0.001).△T_(1)%and ESP were positively correlated with OATP1 levels(r=0.82,0.85;P<0.001),whereas T_(1post) had a negative correlation with OATP1 levels(r=-0.83;P<0.001).INTRODUCTION Hepatic sinusoidal obstruction syndrome(SOS)is also known as hepatic veno-occlusive disease of the liver[1].The main pathological feature of hepatic SOS is damage to liver terminal vessels,and the clinical symptoms of it include ascites and abdominal pain[2].It was first proposed in 1979 as an early complication of hematopoietic stem cell transplantation[3].The prevalence ranges from 5%to 60%,and hepatic SOS is a potentially severe complication and can even lead to death in severe cases[4].Recently,systemic neoadjuvant chemotherapy became widely regarded as one of the causes hepatic SOS in the patients with advanced metastatic colorectal cancer[5,6],especially those were treated with oxaliplatin[7,8].Oxaliplatin-based preoperative chemotherapy is used for patients with colorectal liver metastases as the standard regimen[8,9],because it could improve tumor resection outcome by shrinking the metastatic sites and reducing recurrence rate[10].Nevertheless,chemotherapy-induced hepatic SOS has been associated with a higher risk of postresection morbidity[11],such as intraoperative bleeding,intraoperative transfusions,and postoperative liver failure[12].Therefore,it is important to detect and diagnose of hepatic SOS timely.Currently,the gold standard is still based on liver biopsy[13],but it is an invasive procedure and has several limitations and complications,such as hemorrhage[14].A noninvasive diagnostic modality is needed for the assessment of hepatic SOS.Some noninvasive tools have been used for diagnosis of hepatic SOS.Researchers have utilized a preoperative platelet count and aspartate aminotransferase to platelet ratio index[15].In addition,some imaging methods such as shear wave ultrasonography,computed tomography,and gadoxetic acid-enhanced magnetic resonance imaging(MRI)have been promoted as useful methods for evaluation of hepatic SOS[16-18].Recent studies with monocrotaline(MCT)-treated rats were conducted to investigate diagnosis and prediction of severity of SOS.For example,intravoxel incoherent motion diffusion-weighted imaging,non-Gaussian diffusion models,and T1 rho quantification[19,20].The MCT-induced hepatic SOS animal model was reproducible,with a detailed pathological scoring criteria[21].Gadoxetic acid is a hepatocyte-specific contrast substance,which can provide parenchymal contrast in the hepato-biliary phase.It is reported that gadoxetic acid is absorbed into the liver parenchyma via organic anion transporter polypeptide 1(OATP1)on the hepatocyte membranes[22-24].Recently,several authors have described the feasibility of gadoxetic acid-enhanced MRI for the diagnosis of oxaliplatin-induced hepatic SOS[25].They mainly diagnosed hepatic SOS based on the signal intensity of the hepatobiliary specific phase.However,there were several limitations due to the inconsistency between signal intensity of the liver parenchyma and the concentration of contrast agent for evaluation of the degree of hepatic SOS[26].Therefore,we measured T1 relaxation time on parametric mapping because it is linearly related to the concentration of the contrast agent and is not affected by other factors[27].Yang et al[28]demonstrated T1 mapping on gadoxetic acid-enhanced MRI for the assessment of oxaliplatin-induced liver injury in a C57BL/6 mouse model.However,the main pathological changes in their model were hepatocyte degeneration and fibrosis.Therefore,we aimed to explore the effectiveness of T1 mapping based on gadoxetic acid-enhanced MRI for the diagnosis of hepatic SOS in a C57BL/6 mouse model,as well as a possible relation between OATP1 Levels and MRI parameters.展开更多
The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-t...The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells.Our previous study confirmed that magnetic resonance imaging,with a focus on the ferritin heavy chain 1 reporter gene,could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene.However,we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal.To solve this problem,we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells.In this study,we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene;we used this lentivirus to transduce bone marrow mesenchymal stem cells.Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells;this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal.In summary,we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter.This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells,which may be useful in stem cell-based therapies.展开更多
Magnetic TS-1 was synthesized thesis and solvent vaporation method. The with nanosized nickelferrite particles prepared samples were characterized as nuclei via the hydrothermal syn- with N2 adsorption-desorption iso-...Magnetic TS-1 was synthesized thesis and solvent vaporation method. The with nanosized nickelferrite particles prepared samples were characterized as nuclei via the hydrothermal syn- with N2 adsorption-desorption iso- therms, FTIR spectrometry, Raman spectrometry, X-ray diffraction, Ultraviolet-visible spectroscopy and Vibrating sample magnetometry. The results show that the composite obtained was composed of TS-1 with MFI structure and NiFe204 with spinel structure, its specific surface area was about 316 m2/g, pore volume was 0.12 cm3/g and pore size distribution was in the range of 0.5-0.7 nm. The catalytic activity of the composite was also investigated by its catalyzing the decomposition of rhodamine B oxidized by H2O2 in aqueous solution. In this case Rhodamine B pollutant could be completely degraded within 150 min. Magnetic TS-1 exhibited high photocatalytic efficiency and super paramagnetic nature for cleaning polluted water with the help of magnetic separation.展开更多
We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The en...We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.展开更多
The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an e...The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT.展开更多
基金supported financially by the National Natural Science Foundation of China(42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1).
文摘Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.
基金Supported by the Academic Leaders Training Program of Pudong Health Bureau of Shanghai,No.PWRd2023-03Clinical Research Fund of Shanghai Municipal Commission of Health,No.202040136+1 种基金National Natural Science Foundation of China,No.82070842Jiangxi Health Commission Science and Technology Plan Project,No.202212838 and No.202212852.
文摘BACKGROUND Cognitive dysfunction is the main manifestation of central neuropathy.Although cognitive impairments tend to be overlooked in patients with diabetes mellitus(DM),there is a growing body of evidence linking DM to cognitive dysfunction.Hyperglycemia is closely related to neurological abnormalities,while often disregarded in clinical practice.Changes in cerebral neurotransmitter levels are associated with a variety of neurological abnormalities and may be closely related to blood glucose control in patients with type 2 DM(T2DM).AIM To evaluate the concentrations of cerebral neurotransmitters in T2DM patients exhibiting different hemoglobin A1c(HbA1c)levels.METHODS A total of 130 T2DM patients were enrolled at the Department of Endocrinology of Shanghai East Hospital.The participants were divided into four groups according to their HbA1c levels using the interquartile method,namely Q1(<7.875%),Q2(7.875%-9.050%),Q3(9.050%-11.200%)and Q4(≥11.200%).Clinical data were collected and measured,including age,height,weight,neck/waist/hip circumferences,blood pressure,comorbidities,duration of DM,and biochemical indicators.Meanwhile,neurotransmitters in the left hippocampus and left brainstem area were detected by proton magnetic resonance spectroscopy.RESULTS The HbA1c level was significantly associated with urinary microalbumin(mALB),triglyceride,low-density lipoprotein cholesterol(LDL-C),homeostasis model assessment of insulin resistance(HOMA-IR),and beta cell function(HOMA-β),N-acetylaspartate/creatine(NAA/Cr),and NAA/choline(NAA/Cho).Spearman correlation analysis showed that mALB,LDL-C,HOMA-IR and NAA/Cr in the left brainstem area were positively correlated with the level of HbA1c(P<0.05),whereas HOMA-βwas negatively correlated with the HbA1c level(P<0.05).Ordered multiple logistic regression analysis showed that NAA/Cho[Odds ratio(OR):1.608,95%confidence interval(95%CI):1.004-2.578,P<0.05],LDL-C(OR:1.627,95%CI:1.119-2.370,P<0.05),and HOMA-IR(OR:1.107,95%CI:1.031-1.188,P<0.01)were independent predictors of poor glycemic control.CONCLUSION The cerebral neurotransmitter concentrations in the left brainstem area in patients with T2DM are closely related to glycemic control,which may be the basis for the changes in cognitive function in diabetic patients.
基金supported by the National Natural Science Foundation of China(21978089)the Program of Shanghai Academic/Technology Research Leader(21XD1433000)Key Research and Development Program of Xinjiang Uygur Autonomous Region(2022B01032-1).
文摘The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterification of citric acid and n-butanol.γ-Aminopropyltriethoxysilane(APTES)was first grafted on the TS-1 zeolite via the condensation reactions with surface hydroxyl groups,and subsequently the HPW was immobilized via the reaction between the amino groups and the protons from HPW-forming strong ionic bonding.The Keggin structure of HPW and MFI topology of TS-1 zeolite were well maintained after the modifications.The amino-functionalization generated abundant uniformly distributed active sites on TS-1 for HPW immobilization,which promoted the dispersity,abundance,as well as the stability of the acid sites.The tetrahedrally coordinated framework titanium and non-framework titania behaved as weak Lewis acid sites,and the protons from the immobilized HPW acted as the moderate or strong Brønsted acid sites.An optimized TBC yield of 96.2%(mol)with a conversion of-COOH of 98.1%(mol)was achieved at 150℃for 6 h over the HPW immobilized on amino-functionalized TS-1.The catalyst exhibited good stability after four consecutive reaction runs,where the activity leveled off at still a relatively high level after somewhat deactivation possibly caused by the leaching of a small portion of weakly anchored APTES or HPW.
基金the National Science Foundation for Young Scientists of China,No.81701682.
文摘BACKGROUND Neoadjuvant chemotherapy can cause hepatic sinusoidal obstruction syndrome(SOS)in patients with colorectal cancer liver metastases and increases posto-perative morbidity and mortality.AIM To evaluate T1 mapping based on gadoxetic acid-enhanced magnetic resonance imaging(MRI)for diagnosis of hepatic SOS induced by monocrotaline.METHODS Twenty-four mice were divided into control(n=10)and experimental(n=14)groups.The experimental groups were injected with monocrotaline 2 or 6 days before MRI.MRI parameters were:T1 relaxation time before enhancement;T1 relaxation time 20 minutes after enhancement(T_(1post));a reduction in T1 relaxation time(△T_(1)%);and first enhancement slope percentage of the liver parenchyma(ESP).Albumin and bilirubin score was determined.Histological results served as a reference.Liver parenchyma samples from the control and experimental groups were analyzed by western blotting,and organic anion transporter polypeptide 1(OATP1)was measured.RESULTS T_(1post),△T_(1)%,and ESP of the liver parenchyma were significantly different between two groups(all P<0.001)and significantly correlated with the total histological score of hepatic SOS(r=-0.70,0.68 and 0.79;P<0.001).△T_(1)%and ESP were positively correlated with OATP1 levels(r=0.82,0.85;P<0.001),whereas T_(1post) had a negative correlation with OATP1 levels(r=-0.83;P<0.001).INTRODUCTION Hepatic sinusoidal obstruction syndrome(SOS)is also known as hepatic veno-occlusive disease of the liver[1].The main pathological feature of hepatic SOS is damage to liver terminal vessels,and the clinical symptoms of it include ascites and abdominal pain[2].It was first proposed in 1979 as an early complication of hematopoietic stem cell transplantation[3].The prevalence ranges from 5%to 60%,and hepatic SOS is a potentially severe complication and can even lead to death in severe cases[4].Recently,systemic neoadjuvant chemotherapy became widely regarded as one of the causes hepatic SOS in the patients with advanced metastatic colorectal cancer[5,6],especially those were treated with oxaliplatin[7,8].Oxaliplatin-based preoperative chemotherapy is used for patients with colorectal liver metastases as the standard regimen[8,9],because it could improve tumor resection outcome by shrinking the metastatic sites and reducing recurrence rate[10].Nevertheless,chemotherapy-induced hepatic SOS has been associated with a higher risk of postresection morbidity[11],such as intraoperative bleeding,intraoperative transfusions,and postoperative liver failure[12].Therefore,it is important to detect and diagnose of hepatic SOS timely.Currently,the gold standard is still based on liver biopsy[13],but it is an invasive procedure and has several limitations and complications,such as hemorrhage[14].A noninvasive diagnostic modality is needed for the assessment of hepatic SOS.Some noninvasive tools have been used for diagnosis of hepatic SOS.Researchers have utilized a preoperative platelet count and aspartate aminotransferase to platelet ratio index[15].In addition,some imaging methods such as shear wave ultrasonography,computed tomography,and gadoxetic acid-enhanced magnetic resonance imaging(MRI)have been promoted as useful methods for evaluation of hepatic SOS[16-18].Recent studies with monocrotaline(MCT)-treated rats were conducted to investigate diagnosis and prediction of severity of SOS.For example,intravoxel incoherent motion diffusion-weighted imaging,non-Gaussian diffusion models,and T1 rho quantification[19,20].The MCT-induced hepatic SOS animal model was reproducible,with a detailed pathological scoring criteria[21].Gadoxetic acid is a hepatocyte-specific contrast substance,which can provide parenchymal contrast in the hepato-biliary phase.It is reported that gadoxetic acid is absorbed into the liver parenchyma via organic anion transporter polypeptide 1(OATP1)on the hepatocyte membranes[22-24].Recently,several authors have described the feasibility of gadoxetic acid-enhanced MRI for the diagnosis of oxaliplatin-induced hepatic SOS[25].They mainly diagnosed hepatic SOS based on the signal intensity of the hepatobiliary specific phase.However,there were several limitations due to the inconsistency between signal intensity of the liver parenchyma and the concentration of contrast agent for evaluation of the degree of hepatic SOS[26].Therefore,we measured T1 relaxation time on parametric mapping because it is linearly related to the concentration of the contrast agent and is not affected by other factors[27].Yang et al[28]demonstrated T1 mapping on gadoxetic acid-enhanced MRI for the assessment of oxaliplatin-induced liver injury in a C57BL/6 mouse model.However,the main pathological changes in their model were hepatocyte degeneration and fibrosis.Therefore,we aimed to explore the effectiveness of T1 mapping based on gadoxetic acid-enhanced MRI for the diagnosis of hepatic SOS in a C57BL/6 mouse model,as well as a possible relation between OATP1 Levels and MRI parameters.
基金supported by the National Natural Science Foundation of China,No.81771892(to JHC).
文摘The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders.Thus,there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells.Our previous study confirmed that magnetic resonance imaging,with a focus on the ferritin heavy chain 1 reporter gene,could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene.However,we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal.To solve this problem,we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells.In this study,we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene;we used this lentivirus to transduce bone marrow mesenchymal stem cells.Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells;this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal.In summary,we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter.This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells,which may be useful in stem cell-based therapies.
文摘Magnetic TS-1 was synthesized thesis and solvent vaporation method. The with nanosized nickelferrite particles prepared samples were characterized as nuclei via the hydrothermal syn- with N2 adsorption-desorption iso- therms, FTIR spectrometry, Raman spectrometry, X-ray diffraction, Ultraviolet-visible spectroscopy and Vibrating sample magnetometry. The results show that the composite obtained was composed of TS-1 with MFI structure and NiFe204 with spinel structure, its specific surface area was about 316 m2/g, pore volume was 0.12 cm3/g and pore size distribution was in the range of 0.5-0.7 nm. The catalytic activity of the composite was also investigated by its catalyzing the decomposition of rhodamine B oxidized by H2O2 in aqueous solution. In this case Rhodamine B pollutant could be completely degraded within 150 min. Magnetic TS-1 exhibited high photocatalytic efficiency and super paramagnetic nature for cleaning polluted water with the help of magnetic separation.
基金This work was supported by the National Natural Science Foundation of China (No.60776039 and No.60406005), the Natural Science Foundation of Beijing (No.3062016), and the School Foundation of Beijing Jiaotong University.
文摘We investigate the electronic and magnetic properties of the diluted magnetic semiconductors Zn1-xMnxS(001) thin films with different Mn doping concentrations using the total energy density functional theory. The energy stability and density of states of a single Mn atom and two Mn atoms at various doped configurations and different magnetic coupling state were calculated. Different doping configurations have different degrees of p-d hybridization, and because Mn atoms are located in different crystal-field environment, the 3d projected densities of states peak splitting of different Mn doping configurations are quite different. In the two Mn atoms doped, the calculated ground states of three kinds of stable configurations are anti-ferromagnetic state. We analyzed the 3d density of states diagram of three kinds of energy stability configurations with the two Mn atoms in different magnetic coupling state. When the two Mn atoms are ferromagnetic coupling, due to d-d electron interactions, density of states of anti-bonding state have significant broadening peaks. As the concentration of Mn atoms increases, there is a tendency for Mn atoms to form nearest neighbors and cluster around S. For such these configurations, the antiferromagnetic coupling between Mn atoms is energetically more favorable.
基金the National Natural Science Foundation of China, China (Grant 21920102005, 22288101, and 21835002)the 111 Project, China (B17020)+2 种基金the European Union through the European Research Council, European Union (grant ERC-AdG-2014-671093, SynCatMatch)the Spanish Government through “Severo Ochoa”, Spain (SEV2016-0683, MINECO) for supporting this workthe financial support from China Scholarship Council, China
文摘The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT.