Nanostructure of magnetically hard and soft materials is fascinating for exploring next-generation ul-trastrong permanent magnets with less expensive rare-earth elements.However,the resulting hard/soft nanocomposites ...Nanostructure of magnetically hard and soft materials is fascinating for exploring next-generation ul-trastrong permanent magnets with less expensive rare-earth elements.However,the resulting hard/soft nanocomposites often exhibit a low remanence/energy product due to the challenge in obtaining ideal phase components and appropriate soft phase fraction.In this work,a novel microstructure of multiple phases consisting of 1:5 phase and 1:3 phase as main hard phase,and a high ratio of Fe(Co)(27 wt.%-48 wt.%)as soft phase was obtained in Sm-Co(Fe)/Fe nanocomposite magnet.The grain size of both hard and soft phases below 15 nm was observed.The optimal energy product for Sm-Co(Fe)/Fe(Co)nanocom-posite is 2.1 times(an increment of 107%)of the corresponding single-hard-phase powders without soft phase.It reports that the isotropic nanocomposite powders exhibit a record of magnetic energy product larger than 25 MGOe(the highest value is 28.6 MGOe).The high performance and the microstructure achieved in this work for the isotropic powders will shed light on and provide a good premise for syn-thesizing high performance anisotropic bulk nanocomposite magnets.展开更多
The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)th...The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.展开更多
he apparatus of the magnetic-connective axis has wide applications. In this paper, starting from the basic principle of the design of the magnetic circuit and from the view point of energy, we obtain the expression fo...he apparatus of the magnetic-connective axis has wide applications. In this paper, starting from the basic principle of the design of the magnetic circuit and from the view point of energy, we obtain the expression for the force moment of the connective axis apparatus by applying the structure and working point of the magpetic circuit. A quantitative analysis by a computer has been performed and the relation of the force moment with different parameters has been obtained. A Similar analysis for the barrel-like apparatus of connective axis has been performed, too. The general formulas for convenient applications in engineering have been found.展开更多
The effect of the orientation magnetic field on the permanent magnetism of Nd-Fe-B sintermagnets is investigated. The results show that the variation law of magnetism with orientation field obviously changes at the cr...The effect of the orientation magnetic field on the permanent magnetism of Nd-Fe-B sintermagnets is investigated. The results show that the variation law of magnetism with orientation field obviously changes at the critical orientation field and the intensity of the orientation field should he determined by the dimension ratio of the magnet for effectively utilizing its magnetic energy product.展开更多
This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the no...This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the nonuniform magnetic field of a permanent magnet has been discussed. The difficult problem that machining wastes attracted by a permanent magnet above the iron base platform has been solved.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52171184,51771220,51771095)Zhejiang Provincial Natural Science Foundation of China (No.LD19E010001).
文摘Nanostructure of magnetically hard and soft materials is fascinating for exploring next-generation ul-trastrong permanent magnets with less expensive rare-earth elements.However,the resulting hard/soft nanocomposites often exhibit a low remanence/energy product due to the challenge in obtaining ideal phase components and appropriate soft phase fraction.In this work,a novel microstructure of multiple phases consisting of 1:5 phase and 1:3 phase as main hard phase,and a high ratio of Fe(Co)(27 wt.%-48 wt.%)as soft phase was obtained in Sm-Co(Fe)/Fe nanocomposite magnet.The grain size of both hard and soft phases below 15 nm was observed.The optimal energy product for Sm-Co(Fe)/Fe(Co)nanocom-posite is 2.1 times(an increment of 107%)of the corresponding single-hard-phase powders without soft phase.It reports that the isotropic nanocomposite powders exhibit a record of magnetic energy product larger than 25 MGOe(the highest value is 28.6 MGOe).The high performance and the microstructure achieved in this work for the isotropic powders will shed light on and provide a good premise for syn-thesizing high performance anisotropic bulk nanocomposite magnets.
文摘The process of the epoxy-bonded Sm_2TM_(17) magnets includes:(1)after melting,the ingots are treated by solid soluiion,and then aged and pulverized;(2)the obtained alloy powder is mixed with epoxy resin bind- er;(3)the mixture is pressed in a magnetic field;(4)the compacts are cured.When the SmCo_(4.9)Fe_(2.7)Cu_(0.54)Zr_(0.13) alloy is heat treated and pressed with optimum pressing parameters,the high quality bonded magnets with B_r=8250 G,_iH_c=13000 Oe,and(BH)_(max)=16MGOe can be obtained.The stability of the magnets is studied also.The irreversible loss of O.C.(open circuit)remanence B_r in the temperature range between 25 and 150℃,is less than 4%.The average temperature coefficient at temperatures between 25 and 70℃ is-0.03%/℃.The magnets obtained have heat resistance up to 130℃ even in long-term service, and have good corrosion resistance in acid,alkali and salt solutions.
文摘he apparatus of the magnetic-connective axis has wide applications. In this paper, starting from the basic principle of the design of the magnetic circuit and from the view point of energy, we obtain the expression for the force moment of the connective axis apparatus by applying the structure and working point of the magpetic circuit. A quantitative analysis by a computer has been performed and the relation of the force moment with different parameters has been obtained. A Similar analysis for the barrel-like apparatus of connective axis has been performed, too. The general formulas for convenient applications in engineering have been found.
文摘The effect of the orientation magnetic field on the permanent magnetism of Nd-Fe-B sintermagnets is investigated. The results show that the variation law of magnetism with orientation field obviously changes at the critical orientation field and the intensity of the orientation field should he determined by the dimension ratio of the magnet for effectively utilizing its magnetic energy product.
文摘This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the nonuniform magnetic field of a permanent magnet has been discussed. The difficult problem that machining wastes attracted by a permanent magnet above the iron base platform has been solved.