期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Characteristics of gravity and magnetic fields and deep structural responses in the southern part of the Kyushu-Palau Ridge
1
作者 Zhen Lin Wen-chao Lü +7 位作者 Zi-ying Xu Peng-bo Qin Hui-qiang Yao Xiao Xiao Xin-he Zhang Chu-peng Yang Xiang-yu Zhang Jia-le Chen 《China Geology》 2021年第4期553-570,共18页
The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is... The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR. 展开更多
关键词 Kyushu-Palau Ridge(KPR) characteristics of gravity and magnetic fields Mindanao fault Moho depth Crust attribute Philippine Sea Plate Marine scientific survey
下载PDF
Characteristics of fault structures in the south coastal zone of Taizhou based on aeromagnetic data
2
作者 Ming Wang Shengjun Liang +2 位作者 Jiaojiao Li Xiaoxing Lin Yongjun Zhang 《Applied Geophysics》 SCIE CSCD 2020年第5期719-735,901,共18页
The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis... The south coastal of Taizhou lies on the magmatic rock belt along the southeast coast of China,which has a complex regional geological structures,intense tectonic movement,and frequent magmatic activities.On the basis of the latest aeromagnetic data,combined with regional geology,gravity,and magnetic susceptibility information,integrated interpretation of the regional aeromagnetic anomalies and their refl ected faults was completed.According to the block features in diff erent zones of the reduction to the pole aeromagnetic data,the magnetic field characteristics and relationship with the structure division were described in detail.The different characteristics of the magnetic field are the concentrated reflection of tectonic movements,magmatic activities,and stratigraphic distributions;the fault structure,especially deep and large fault structures,was inferred and studied.The fault structures were mainly distributed in the NE,NNE,and NW directions,with approximately equal spacing between them.The magnetic anomaly is mainly characterized by the boundary,gradient zones,and beaded anomalies in a different magnetic field.The faults are not only important tectonic boundaries in this region but also tectonic belts that control the distribution of mineralization.Under the interaction of these faults,they form the basic structural pattern of the east-west zone and the north-south block.The NE faults have the largest scale and obviously control the diff erent magnetic fi elds and magmatic activities.The results can provide a reference for further study of the distribution and activity characteristics of magmatic rocks in the coastal zone. 展开更多
关键词 aeromagnetic data magnetic field characteristics fault structure features the south of Taizhou the coastal zone
下载PDF
Characteristics and Geological Significance of Aeromagnetic Data in Taiyuan,Shanxi,China
3
作者 Ming Wang Xiaoxing Lin +1 位作者 Zhenjun Liu Fang Li 《Earthquake Research Advances》 CSCD 2021年第S01期30-34,共5页
The study area is located in the central part of Shanxi Province,between Qinling Tectonic Belt and Yinshan Tectonic Belt,which is an important part of North China Platform;General direction of the structural line is N... The study area is located in the central part of Shanxi Province,between Qinling Tectonic Belt and Yinshan Tectonic Belt,which is an important part of North China Platform;General direction of the structural line is NNE,with clear geological structure outline and developed structural features.The study area has complex regional geological structure,intense tectonic movement and frequent magmatic activities.Based on the latest high-precision aeromagnetic data,integrated interpretation was completed,combining with the existing geological and geophysical research results.According to the block features in different zones of the RTP aeromagnetic data,this article thoroughly studied the characteristics of aeromagnetic anomalies and found the relationship between aeromagnetic anomalies and surface geological information,and the fault distribution,magmatic rock distribution and magnetic characteristics in this area are discussed. 展开更多
关键词 Aeromagnetic data magnetic field characteristics Lithologic-fault structure featwes Taiyuan
下载PDF
Field and Thermal Characteristics of Magnetizing Fixture
4
作者 Pill-Soo Kim (Daelim College, 526-7 Bisan Dongan, Anyang Kyunggi 431-715, Korea) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期232-233,共2页
This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be. obtained, the efficient design of magnetizer which produce desired magne... This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be. obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance. 展开更多
关键词 field and Thermal characteristics of Magnetizing Fixture
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部