A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m...A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.展开更多
Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation...Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.展开更多
Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtai...Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.展开更多
On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic fi...On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.展开更多
Design of a giant magnetostrictive ultrasonic transducer for progressive sheet forming was presented.A dynamic analysis of the theoretically designed ultrasonic vibration system was carried out using the finite elemen...Design of a giant magnetostrictive ultrasonic transducer for progressive sheet forming was presented.A dynamic analysis of the theoretically designed ultrasonic vibration system was carried out using the finite element method(FEM).In addition,simulations were performed to verify the theoretical design.Then,a magnetically conductive material was added between the giant magnetostrictive rod and the permanent magnet.Besides,magnetic field simulations of the transducer were performed.The influence of the material thickness of the magnetically conductive material on uniformity of the induced magnetic field was studied.Furthermore,the impedance analysis and amplitude measurement were performed to compare the performance of transducers with and without the magnetically conductive material.The experimental results show that the magnetic field uniformity is the highest when the magnetically conductive material has a thickness of about 1.6 mm.The output amplitude of the giant magnetostrictive transducer is improved by adding the magnetically conductive material.Moreover,the mechanical quality factor and impedance are reduced,while the transducer operates more stably.展开更多
Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by co...Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.展开更多
Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a ...Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a clapper relay in a uniform static magnetic field situation based on the finite element method (FEM) is studied. Influences of the magnetic field on dynamic parameters (delay time, pick-up time, end pressure, and final velocity) as well as a situation in which the relay cannot function normally are analyzed. Simulation reveals that the external magnetic field which weakens the relay’s air-gap field has a greater influence on the relay’s dynamic parameters than the one strengthening the field. The validity of the simulation is verified by measured results of coil current and armature displacement.展开更多
The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are take...The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.展开更多
In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theor...In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theory of the square Helmholtz coil is established, and the design method is verified by Matlab calculation. Compared with conventional circular Helmholtz coil, the novel square one is with a larger uniform region. Simulation work is conducted in Maxwell, and the distribution of the magnetic field is obtained. The results demonstrate the validation of the applied calculation method of the proposed Helmholtz model. The space utilization rate η is used to make a comparison between the square and circular coils for the uniform region. The square Helmholtz coil is fabricated, the length of a single square coil is 1.5 m, and the amplitude of the magnetic field is controlled by the current. The GSM-19 T proton magnetometer is used to measure the amplitude of the magnetic field generated by the square Helmholtz coil. Experimental results indicate that a wide-range variable uniform magnetic field from 0 to 120 μT is generated in the center of Helmholtz coils.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and t...We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and the momentum eigenstate are revealed.展开更多
We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam e...We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.展开更多
A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform ele...A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform electric field in a positive column of helium direct current(DC) gas discharge Graphs showing the electron density and energy distributions, and the percentage of electrons that reach the wall and the end of the positive column are presented. The results indicate that the mirror magnetic field can control the electron transport behavior in the positive column which are in good agreement with experimental results.展开更多
Electrostatic dusty plasma waves in a uniform magnetic field are studied. Unless the magnetic field is extremely strong, the dust particles can hardly be magnetized, while however, electrons and ions are easily done s...Electrostatic dusty plasma waves in a uniform magnetic field are studied. Unless the magnetic field is extremely strong, the dust particles can hardly be magnetized, while however, electrons and ions are easily done so. Electrostatic modes in such dusty plasmas can then be investigated by making use of the 'moderately magnetized' assumption of magnetized electrons and ions, and unmagnetized dust particles. In a high frequency range, due to the existence of dust component, both frequencies of Lang- muir waves (parallel to the magnetic field) and upper hybrid waves (perpendicular to the field) are reduced. In the frequency range of ion waves, besides the effect on dust-ion-acoustic waves propagating parallel to the magnetic field, the frequency of ion cyclotron waves perpendicular to the magnetic field is also enhanced. In a very low dust frequency range, we find an 'ion-cyclotron- dust-acoustic' mode propagating across the field line with a frequency even slower than dust acoustic waves.展开更多
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear...This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.展开更多
The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin pl...The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.展开更多
Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process usi...Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls.The improved ESRC comprises a conventional ESRC circuit and an external coil circuit.A comprehensive 3D model,including multi-physics fields,is proposed to study the effect of external magnetic fields on the multi-phys-ics fields and interface temperature uniformity.The simulated results demonstrate that the nonuniform Joule heat and flow fields cause a non-uniform interface temperature in the conventional ESRC.As for the improved ESRC,the magnetic flux density(B_(coil))along the z-axis is pro-duced by an anticlockwise current of the external coil.The rotating Lorentz force is generated from the interaction between the radial current and axial B_(coil).Therefore,the slag pool flows clockwise,which enhances circumferential effective thermal conductivity.As a result,the uniformity of the temperature field and interface temperature improve.In addition,the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results,which verifies the accuracy of the improved ESRC model.Therefore,an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality.展开更多
This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current li...This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current limitations are highlighted.Based on the first promising studies,potential clinical applications at 7 Tesla are suggested.Other aims are to stimulate awareness of the potential of ultra-high field magnetic resonance and to stimulate active participation in much needed basic or clinical research at 7 Tesla or higher.展开更多
Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography.The auditory stimuli of 2 kHz pure tone were binaurally presented wi...Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography.The auditory stimuli of 2 kHz pure tone were binaurally presented with an interstimulus interval of 1 second.The intensity of stimuli was 90 dB and the stimulus duration was 8 ms.The results showed that the M100 was the prominent response, peaking approximately 100 ms after stimulus onset in all subjects.It originated from the area close to Heschl’s gyrus.In the patient group,the peak latency of M100 responses was significantly prolonged,and the mean strength of equivalent current dipole was significantly smaller in the affected hemisphere.The three-dimensional inter-hemispheric difference of the M100 positions was increased in the patient group.Our experimental findings suggested that impairment of cerebral function in patients with acute ischemic stroke can be detected using magnetoencephalography with the higher spatial resolution and temporal resolution.Magnetoencephalography could provide objective and sensitive indices to estimate auditory cortex function in patients with acute cerebral infarction.展开更多
Increasing evidence shows that extremely low frequency electromagnetic fields(ELF-EMFs) stimulation is able to exert a certain action on autoimmunity and immune cells. In the past, the efficacy of pulsed ELFEMFs in ...Increasing evidence shows that extremely low frequency electromagnetic fields(ELF-EMFs) stimulation is able to exert a certain action on autoimmunity and immune cells. In the past, the efficacy of pulsed ELFEMFs in alleviating the symptoms and the progression of multiple sclerosis has been supported through their action on neurotransmission and on the autoimmune mechanisms responsible for demyelination. Regarding the immune system, ELF-EMF exposure contributes to a general activation of macrophages, resulting in changes of autoimmunity and several immunological reactions, such as increased reactive oxygen species-formation, enhanced phagocytic activity and increased production of chemokines. Transcranial electromagnetic brain stimulation is a non-invasive novel technique used recently to treat different neurodegenerative disorders, in particular Alzheimer's disease. Despite its proven value, the mechanisms through which EMF brain-stimulation exerts its beneficial action on neuronal function remains unclear. Recent studies have shown that its beneficial effects may be due to a neuroprotective effect on oxidative cell damage. On the basis of in vitro and clinical studies on brain activity, modulation by ELF-EMFs could possibly counteract the aberrant pro-inflammatory responses present in neurodegenerative disorders reducing their severity and their onset. The objective of this review is to provide a systematic overview of the published literature on EMFs and outline the most promising effects of ELF-EMFs in developing treatments of neurodegenerative disorders. In this regard, we review data supporting the role of ELF-EMF in generating immune-modulatory responses, neuromodulation, and potential neuroprotective benefits. Nonetheless, we reckon that the underlying mechanisms of interaction between EMF and the immune system are still to be completely understood and need further studies at a molecular level.展开更多
基金financially supported by the National MCF Energy R&D Program of China(No.2022YFE03190100)National Natural Science Foundation of China(Nos.11935005,12105035 and U21A20438)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120018)the Fundamental Research Funds for the Central Universities(No.DUT21TD104)the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(No.Lab ASP-2020-01).
文摘A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications.
基金National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+2 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Heye Health Technology Chong Ming Project(HYCMP2021010)CASHIPS Director’s Fund(BJPY2021A06)。
文摘Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.
文摘Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.
文摘On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.
基金supported by the National Science Foundation of China(No.51675422)the Shaanxi Province Key Research and Development Plan Project of China(No.2017GY-028)。
文摘Design of a giant magnetostrictive ultrasonic transducer for progressive sheet forming was presented.A dynamic analysis of the theoretically designed ultrasonic vibration system was carried out using the finite element method(FEM).In addition,simulations were performed to verify the theoretical design.Then,a magnetically conductive material was added between the giant magnetostrictive rod and the permanent magnet.Besides,magnetic field simulations of the transducer were performed.The influence of the material thickness of the magnetically conductive material on uniformity of the induced magnetic field was studied.Furthermore,the impedance analysis and amplitude measurement were performed to compare the performance of transducers with and without the magnetically conductive material.The experimental results show that the magnetic field uniformity is the highest when the magnetically conductive material has a thickness of about 1.6 mm.The output amplitude of the giant magnetostrictive transducer is improved by adding the magnetically conductive material.Moreover,the mechanical quality factor and impedance are reduced,while the transducer operates more stably.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51661020,11504149,and 11364024)the Postdoctoral Science Foundation of China(Grant No.2014M560371)the Funds for Distinguished Young Scientists of Lanzhou University of Technology(Grant No.J201304)。
文摘Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.
基金Project (No. 513230502) supported by the PLA General ArmamentDepartment of China
文摘Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a clapper relay in a uniform static magnetic field situation based on the finite element method (FEM) is studied. Influences of the magnetic field on dynamic parameters (delay time, pick-up time, end pressure, and final velocity) as well as a situation in which the relay cannot function normally are analyzed. Simulation reveals that the external magnetic field which weakens the relay’s air-gap field has a greater influence on the relay’s dynamic parameters than the one strengthening the field. The validity of the simulation is verified by measured results of coil current and armature displacement.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068)the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0411)
文摘The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
基金The National Natural Science Foundation of China(No.61327803)
文摘In order to calibrate electrical instruments and generate a constant magnetic field, a novel design method for square Helmholtz coil is proposed. According to the superposition principle in electromagnetics, the theory of the square Helmholtz coil is established, and the design method is verified by Matlab calculation. Compared with conventional circular Helmholtz coil, the novel square one is with a larger uniform region. Simulation work is conducted in Maxwell, and the distribution of the magnetic field is obtained. The results demonstrate the validation of the applied calculation method of the proposed Helmholtz model. The space utilization rate η is used to make a comparison between the square and circular coils for the uniform region. The square Helmholtz coil is fabricated, the length of a single square coil is 1.5 m, and the amplitude of the magnetic field is controlled by the current. The GSM-19 T proton magnetometer is used to measure the amplitude of the magnetic field generated by the square Helmholtz coil. Experimental results indicate that a wide-range variable uniform magnetic field from 0 to 120 μT is generated in the center of Helmholtz coils.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).
基金The project supported by National Natural Science Foundation of China under Grant No.10175057the President Foundation of the Chinese Academy of Sciences
文摘We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and the momentum eigenstate are revealed.
文摘We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.
文摘A Monte Carlo simulation technique has been used to model the electron transport' behavior, especially the electron density and energy distributions under the influence of a mirror magnetic field and a uniform electric field in a positive column of helium direct current(DC) gas discharge Graphs showing the electron density and energy distributions, and the percentage of electrons that reach the wall and the end of the positive column are presented. The results indicate that the mirror magnetic field can control the electron transport behavior in the positive column which are in good agreement with experimental results.
基金This work is supported by the National Natural Science Foundation of China International Cooperation Fund No.0010760807.
文摘Electrostatic dusty plasma waves in a uniform magnetic field are studied. Unless the magnetic field is extremely strong, the dust particles can hardly be magnetized, while however, electrons and ions are easily done so. Electrostatic modes in such dusty plasmas can then be investigated by making use of the 'moderately magnetized' assumption of magnetized electrons and ions, and unmagnetized dust particles. In a high frequency range, due to the existence of dust component, both frequencies of Lang- muir waves (parallel to the magnetic field) and upper hybrid waves (perpendicular to the field) are reduced. In the frequency range of ion waves, besides the effect on dust-ion-acoustic waves propagating parallel to the magnetic field, the frequency of ion cyclotron waves perpendicular to the magnetic field is also enhanced. In a very low dust frequency range, we find an 'ion-cyclotron- dust-acoustic' mode propagating across the field line with a frequency even slower than dust acoustic waves.
基金supported by the Science Fund Research Grant from Kementerian Sains dan Teknologi(MOSTI)
文摘This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.
基金funded by the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Natural Science Research Project of Higher Education Institutions in Anhui Province(2022AH040045)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(2021-YF22).
文摘The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51874084 and 52174303)the Fundamental Research Funds for the Central Universities of China(No.N2125026).
文摘Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls.Therefore,this study proposes an improved electroslag remelting cladding(ESRC)process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls.The improved ESRC comprises a conventional ESRC circuit and an external coil circuit.A comprehensive 3D model,including multi-physics fields,is proposed to study the effect of external magnetic fields on the multi-phys-ics fields and interface temperature uniformity.The simulated results demonstrate that the nonuniform Joule heat and flow fields cause a non-uniform interface temperature in the conventional ESRC.As for the improved ESRC,the magnetic flux density(B_(coil))along the z-axis is pro-duced by an anticlockwise current of the external coil.The rotating Lorentz force is generated from the interaction between the radial current and axial B_(coil).Therefore,the slag pool flows clockwise,which enhances circumferential effective thermal conductivity.As a result,the uniformity of the temperature field and interface temperature improve.In addition,the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results,which verifies the accuracy of the improved ESRC model.Therefore,an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality.
文摘This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current limitations are highlighted.Based on the first promising studies,potential clinical applications at 7 Tesla are suggested.Other aims are to stimulate awareness of the potential of ultra-high field magnetic resonance and to stimulate active participation in much needed basic or clinical research at 7 Tesla or higher.
基金supported by the Technology Foundation for a Selected Overseas Chinese Scholar,Ministryof Human Resources and Social Security of China,No.2009-11-6the Natural Science Foundation of HebeiProvince of China,No.C2009001483
文摘Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography.The auditory stimuli of 2 kHz pure tone were binaurally presented with an interstimulus interval of 1 second.The intensity of stimuli was 90 dB and the stimulus duration was 8 ms.The results showed that the M100 was the prominent response, peaking approximately 100 ms after stimulus onset in all subjects.It originated from the area close to Heschl’s gyrus.In the patient group,the peak latency of M100 responses was significantly prolonged,and the mean strength of equivalent current dipole was significantly smaller in the affected hemisphere.The three-dimensional inter-hemispheric difference of the M100 positions was increased in the patient group.Our experimental findings suggested that impairment of cerebral function in patients with acute ischemic stroke can be detected using magnetoencephalography with the higher spatial resolution and temporal resolution.Magnetoencephalography could provide objective and sensitive indices to estimate auditory cortex function in patients with acute cerebral infarction.
文摘Increasing evidence shows that extremely low frequency electromagnetic fields(ELF-EMFs) stimulation is able to exert a certain action on autoimmunity and immune cells. In the past, the efficacy of pulsed ELFEMFs in alleviating the symptoms and the progression of multiple sclerosis has been supported through their action on neurotransmission and on the autoimmune mechanisms responsible for demyelination. Regarding the immune system, ELF-EMF exposure contributes to a general activation of macrophages, resulting in changes of autoimmunity and several immunological reactions, such as increased reactive oxygen species-formation, enhanced phagocytic activity and increased production of chemokines. Transcranial electromagnetic brain stimulation is a non-invasive novel technique used recently to treat different neurodegenerative disorders, in particular Alzheimer's disease. Despite its proven value, the mechanisms through which EMF brain-stimulation exerts its beneficial action on neuronal function remains unclear. Recent studies have shown that its beneficial effects may be due to a neuroprotective effect on oxidative cell damage. On the basis of in vitro and clinical studies on brain activity, modulation by ELF-EMFs could possibly counteract the aberrant pro-inflammatory responses present in neurodegenerative disorders reducing their severity and their onset. The objective of this review is to provide a systematic overview of the published literature on EMFs and outline the most promising effects of ELF-EMFs in developing treatments of neurodegenerative disorders. In this regard, we review data supporting the role of ELF-EMF in generating immune-modulatory responses, neuromodulation, and potential neuroprotective benefits. Nonetheless, we reckon that the underlying mechanisms of interaction between EMF and the immune system are still to be completely understood and need further studies at a molecular level.