Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulse...Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulses,including electron density distributions,induced electronic currents,and ultrafast magnetic field generation.By comparing the results of the coherent resonant excitation and direct ionization,we found that for the coherent resonant excitation,the electron is localized and the coherent electron wave packet moves periodically between three protons,which can be attributed to the coherent superposition of the ground A′state and excited E+state.Whereas,for the direct single-photon ionization,the induced electronic currents mainly come from the free electron in the continuum state.It is found that there are differences in the intensity,phase,and frequency of the induced current and the generated magnetic field.The scheme allows one to control the induced electronic current and the ultrafast magnetic field generation.展开更多
A new material for both magnetic coupling and electrocatalytic hydrogen generation based on a copper complex,[(HL)CuCl-CuCl(HL)]HCl 1 is prepared by the reaction of 2-(pyridylmethyl)amino-N,N-bis(2-methylene-4,...A new material for both magnetic coupling and electrocatalytic hydrogen generation based on a copper complex,[(HL)CuCl-CuCl(HL)]HCl 1 is prepared by the reaction of 2-(pyridylmethyl)amino-N,N-bis(2-methylene-4,6-difluorophenol)(H2L) and CuCl2·2H2O.In solid,complex 1 is built from two copper units([(HL)CuCl]),and exhibits an antiferromagnetic exchange interaction between copper(Ⅱ) ions(J=-160cm^-1).In liquid,1 can electrocatalyze hydrogen generation both from acetic acid with a turnover frequency(TOF) of 16.3 moles of hydrogen per mole of catalyst per hour at an overpotential(OP)of 941.6 mV(in DMF),and a neutral buffer with a TOF of 1415.6 moles of hydrogen per mole of catalyst per hour at an OP of 787.6 mV.展开更多
The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic f...The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ▽(n/) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection(annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074146 and 12074142)。
文摘Coherent electronic dynamics are of great significance in photo-induced processes and molecular magnetism.We theoretically investigate electronic dynamics of triatomic molecule H_(3)^(2+) by circularly polarized pulses,including electron density distributions,induced electronic currents,and ultrafast magnetic field generation.By comparing the results of the coherent resonant excitation and direct ionization,we found that for the coherent resonant excitation,the electron is localized and the coherent electron wave packet moves periodically between three protons,which can be attributed to the coherent superposition of the ground A′state and excited E+state.Whereas,for the direct single-photon ionization,the induced electronic currents mainly come from the free electron in the continuum state.It is found that there are differences in the intensity,phase,and frequency of the induced current and the generated magnetic field.The scheme allows one to control the induced electronic current and the ultrafast magnetic field generation.
基金supported by the National Natural Science Foundation of China (Nos. 20971045, 21271073)
文摘A new material for both magnetic coupling and electrocatalytic hydrogen generation based on a copper complex,[(HL)CuCl-CuCl(HL)]HCl 1 is prepared by the reaction of 2-(pyridylmethyl)amino-N,N-bis(2-methylene-4,6-difluorophenol)(H2L) and CuCl2·2H2O.In solid,complex 1 is built from two copper units([(HL)CuCl]),and exhibits an antiferromagnetic exchange interaction between copper(Ⅱ) ions(J=-160cm^-1).In liquid,1 can electrocatalyze hydrogen generation both from acetic acid with a turnover frequency(TOF) of 16.3 moles of hydrogen per mole of catalyst per hour at an overpotential(OP)of 941.6 mV(in DMF),and a neutral buffer with a TOF of 1415.6 moles of hydrogen per mole of catalyst per hour at an OP of 787.6 mV.
基金supported by the National Basic Research Program of China(Grant No.2013CBA01500)the National Natural Science Foundation of China(Grant Nos.11421064,and 11220101002)a Leverhulme Trust Research Project Grant at University of Strathclyde
文摘The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ▽(n/) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection(annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.