期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Thermal analysis of high speed permanent magnetic generator 被引量:2
1
作者 LI WeiLi ZHANG XiaoChen +2 位作者 CHENG ShuKang CAO JunCi ZHANG YiHuang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1419-1426,共8页
High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal... High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal coupling analyzed. The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM, from which the electromagnetic performances and the loss distributions are obtained. Then, an analysis model for fluid-solid temperature field analysis is established. Taking losses as the distributed heat sources, the 3D thermal field is coupling calculated. The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction, as well as the whole region 3D temperature distribution in HSPMG are obtained. Then, considering the variations of heat sources distributions and heat transfer conditions, 3D temperature fields of HSPMG operating under different speeds are calculated, and the influences of machine operating speed on the HSPMG thermal performance are studied, based on which, the functions of machine temperature with operating speed and stator windings resistance are proposed. The obtained conclusions may provide a useful reference for the design and research of HSPMG. 展开更多
关键词 high-speed permanent magnetic generator ELECTROmagnetic FLUID TEMPERATURE SPEED
原文传递
Design Optimization of a Self-circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method
2
作者 Gaojia Zhu Yunhao Li Longnv Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期170-176,共7页
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s... With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined. 展开更多
关键词 Permanent magnet wind generator Hydrogen cooling Taguchi method Fluidic-thermal coupled fields
下载PDF
Winding Function Model-based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-drive Systems
3
作者 Mehrage Ghods Jawad Faiz Ali A Pourmoosa 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期216-226,共11页
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h... The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy. 展开更多
关键词 Index Terms—Permanent magnet transverse flux generator Winding function 3D-FEM Cogging torque PROTOTYPING
下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
4
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Auxiliary Teeth Design to Reduce Short-Circuit Current in Permanent Magnet Generators 被引量:3
5
作者 Yong He Wenxiang Zhao +1 位作者 Hongyu Tang Jinghua Ji 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第3期198-205,共8页
In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolatio... In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolation of the fault-tolerant generator are analyzed briefly.Secondly,the auxiliary teeth structure is optimized to improve fault-tolerant capability.Then,the PM generators with different stator structures are compared to evaluate the proposed auxiliary teeth structure.Four critical generator parameters are investigated,i.e.back-electromotive forces,short-circuit currents,stator magneto motive force(MMF)harmonics,and torque performances.The results show that the proposed structure has better fault-tolerant capability than the conventional two-layer windings.Moreover,the stator MMF harmonics can be suppressed.Furthermore,the cogging torque and torque ripple can be suppressed by adopting the proposed structure.Finally,the simulated results are given to validate the theoretical analysis. 展开更多
关键词 Auxiliary teeth fault-tolerant generator magneto motive force TORQUE finite-element method permanent magnet generator
下载PDF
Design, Construction and Ocean Testing of Wave Energy Conversion System with Permanent Magnet Tubular Linear Generator 被引量:2
6
作者 陈中显 余海涛 +1 位作者 刘春元 洪立玮 《Transactions of Tianjin University》 EI CAS 2016年第1期72-76,共5页
In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with perman... In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed. 展开更多
关键词 ocean wave energy BUOY permanent magnet tubular linear generator ELECTRICITY
下载PDF
Analysis and Design of Surface Permanent Magnet Synchronous Motor and Generator 被引量:7
7
作者 Chengyuan He Thomas Wu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期94-100,共7页
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o... This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design. 展开更多
关键词 initeelement analysis FABRICATION high-efficiency mathematic model surface permanent magnet synchronous motor or generator.
下载PDF
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system 被引量:1
8
作者 Manal Messadi Adel Mellit +1 位作者 Karim Kemih Malek Ghanes 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期177-183,共7页
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper... This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. 展开更多
关键词 permanent magnet synchronous generator chaotic system genetic algorithm predictive control
下载PDF
Comparative Performance of Fixed-Speed and Variable-Speed Wind Turbine Generator Systems 被引量:2
9
作者 Mohamed Mansour Mohamed Nejib Mansouri Mohamed Faouzi Mimouni 《Journal of Mechanics Engineering and Automation》 2011年第1期74-81,共8页
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t... In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation. 展开更多
关键词 Fixed speed wind generator variable speed wind generator squirrel cage induction generator permanent magnet synchronous generator (PMSG) maximum power point tracking (MPPT) pitch control.
下载PDF
The Multi-Objective Optimization of AFPM Generators with Double-Sided Internal Stator Structures for Vertical Axis Wind Turbines
10
作者 Dandan Song Lianjun Zhou +2 位作者 Ziqi Peng Senhua Luo Jun Zhu 《Energy Engineering》 EI 2021年第5期1439-1452,共14页
The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with do... The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with double-sided internal stator structure can be improved by the reasonable design of electromagnetic parameters.To further improve the overall performance of the AFPM generator with double-sided internal stator structure,multivariable(coil widthω_(c),permanent magnet thickness h,pole arc coefficient α_(p) and working air gap l_(g))and multi-objective(generator efficiencyη,total harmonic distortion of the voltage THD and induced electromotive force amplitude EMF)functional relationships are innovatively established.Orthogonal analysis,mean analysis and variance analysis are performed on the influence parameters by combining the Taguchi method and response surface methodology to study the influence degrees of each influence parameter on the optimization objectives to determine the most appropriate electromagnetic parameters.The optimization results are verified by 3D finite element analysis.The optimized APFM generator with double-sided internal stator structure exhibits superior economy,stronger magnetic density,higher efficiency and improved power quality. 展开更多
关键词 Wind turbine double-sided internal stator structure multi-objective optimization axial flux permanent magnet generator
下载PDF
Starting Control of Free Piston Stirling Linear Generator System Based on FOC
11
作者 Qiaoling Yang Kechun Zhang +2 位作者 Shenghui Guo Boliang Song Xiaoyu Zhang 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第2期195-200,共6页
Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear... Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation. 展开更多
关键词 Parameter setting Field orientation control Double closed loop Permanent magnet synchronous linear generator
下载PDF
Prediction of the Inductance in a Synchronous Linear Permanent Magnet Generator
12
作者 Boel Ekergard Rafael Waters Mats Leijon 《Journal of Electromagnetic Analysis and Applications》 2011年第5期155-159,共5页
This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctanc... This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator. 展开更多
关键词 Wave Power Synchronous Linear Permanent Magnet generator Varying Inductance ABC of Frame Reference
下载PDF
Brushless DC Generator Controlled by Constrained Predictive Algorithm
13
作者 G. Gatto I. Marongiu +1 位作者 A. Perfetto A. Serpi 《Journal of Energy and Power Engineering》 2011年第8期750-758,共9页
The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The t... The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The tracking characteristic of the prime-mover is mandatory for setting the reference value of the electromagnetic torque developed by the generator, by means of which the switching pattern of the AC/DC converter is determined at each sampling time interval. The above generator performances are possible under certain constrained values of reference torque and rotor speed, due to the DC-bus voltage saturation. The knowledge of these quantities are necessary for the best matching of the prime-mover with the brushless DC generator and the AC/DC converter. In this paper, these constraints are investigated in detail with the aim of highlighting the best operation of the conversion s) stem under a constant DC bus voltage. 展开更多
关键词 Brushless machines permanent magnet generators predictive control
下载PDF
Robust Variable-Pitch Control Design of PMSG Via Perturbation Observer 被引量:3
14
作者 Yilin Hu Yan Xie +2 位作者 Bo Li Yiqiang Jiang Fu Bao 《Energy Engineering》 EI 2021年第4期911-929,共19页
Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy ... Wind turbine employs pitch angle control to maintain captured power at its rated value when the wind speed is higher than rated value.This work adopts a perturbation observer based sliding-mode control(POSMC)strategy to realize robust variable-pitch control of permanent magnet synchronous generator(PMSG).POSMC combines system nonlinearities,parametric uncertainties,unmodelled dynamics,and time-varying external disturbances into a perturbation,which aims to estimate the perturbation via a perturbation observer without an accurate system model.Subsequently,sliding mode control(SMC)is designed to completely compensate perturbation estimation in real-time for the sake of achieving a global consistent control performance and improving system robustness under complicated environments.Simulation results indicate that,compared with vector control(VC),feedback linearization control(FLC),and nonlinear adaptive control(NAC),POSMC has the best control performance in ramp wind and random wind and the highest robustness in terms of parameter uncertainty.Specially,the integral absolute error index of!m of POSMC is only 11.69%,12.10%and 15.14%of that of VC,FLC and NAC in random wind speed. 展开更多
关键词 Variable-pitch control permanent magnet synchronous generator perturbation observer
下载PDF
Magnetically levitated/piezoelectric/triboelectric hybrid generator as a power supply for the temperature sensor 被引量:4
15
作者 ZHANG ZengXing HE Jian +7 位作者 HAN JianQiang XU HongYan MU JiLiang WEN Tao WANG DaWei TIAN ZhuMei CHEN ZeTian XUE ChenYang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1068-1074,共7页
The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/trib... The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology. 展开更多
关键词 triboelectric nanogenerator piezoelectric magnetically levitated generator energy harvesting self-powered sensing
原文传递
Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System 被引量:1
16
作者 K. Suresh Dr. R. Arulmozhiyal 《Circuits and Systems》 2016年第11期3705-3722,共18页
This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), pe... This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware. 展开更多
关键词 Bidirectional DC/DC Converter Boost DC/DC Converter Wind Turbine Generation System (WTGS) Permanent Magnet DC generator (PMDC)
下载PDF
Intensification of Power Quality Using PMSG and Cascaded Multi Cell Trans-Z-Source Inverter 被引量:1
17
作者 E. Rajendran Dr. C. Kumar Dr. P. Suresh 《Circuits and Systems》 2016年第11期3778-3793,共17页
This script depicts the power quality intensification of Wind Energy Transfer System (WETS) using Permanent Magnet Synchronous Generator (PMSG) and Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI). The PMSG knock... This script depicts the power quality intensification of Wind Energy Transfer System (WETS) using Permanent Magnet Synchronous Generator (PMSG) and Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI). The PMSG knocks the induction generator and earlier generators, because of their stimulating performances without taking the frame power. The Trans-Z-Source Inverter with one transformer and one capacitor is connected newly. To increase the boosting ratio gratuity a cascaded impression is proposed with adopting multi-winding transformer which provides an option for this manuscript to use coupled inductor as an alternative of multi-winding transformer and remains the matching voltage gain as cascaded multi cell trans-Z- source inverter. Accordingly the parallel capacitances are also balancing the voltage gain. The parallel correlation of the method is essentially to trim down the voltage stresses and to improve the input current gain of the inverter. By using MALAB Simulation, harmonics can be reduced up to 1.32% and also DC side can be boosted up our required level 200 - 1000 V achievable. The new hardware setup results demonstrate to facilitate the multi cell Trans Z-source inverter. This can be generated high-voltage gain [50 V - 1000 V] and also be credible. Moreover, the level of currents, voltages and Harmonics on the machinery is low. 展开更多
关键词 Neuro Fuzzy System (NFS) Permanent Magnet Synchronous generator (PMSG) Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI) Wind Energy Transfer System (WETS)
下载PDF
Control-Based Stabilization of DC Microgrid for More Electric Aircraft
18
作者 YANG Jiajun BUTICCHI Giampaolo +3 位作者 GU Chunyang WHEELER Pat ZHANG He GERADA Chris 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期737-746,共10页
Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing num... Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing number of on-board power electronic based devices,the distribution system of the aircraft can be regarded as an onboard microgrid.As it is known that the load power electronic converters can exhibit constant power load(CPL)characteristics and reduce the system stability,it is necessary to accurately predict and enhance the system stability in designing process.This paper firstly analyzes the stability of an on-board DC microgrid with the presence of CPL.Then,discusses the reasons behind instability and proposes a control strategy to enhance system stability.Finally,the simulation results are worked out to validate the analysis and the effect of the proposed control strategy. 展开更多
关键词 DC microgrid stability analysis impedance model constant power load more electric aircraft dual active bridge converter permanent magnet synchronous generator
下载PDF
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
19
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 Fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
Enhanced Atom Search Optimization Based Optimal Control Parameter Tunning of PMSG for MPPT
20
作者 Xin He Ping Wei +3 位作者 Xiaoyan Gong Xiangfei Meng Dong Shan Jiawei Zhu 《Energy Engineering》 EI 2022年第1期145-161,共17页
For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreov... For the past few years,wind energy is the most popular non-traditional resource among renewable energy resources and it’s significant to make full use of wind energy to realize a high level of generating power.Moreover,diverse maximum power point tracking(MPPT)methods have been designed for varying speed operation of wind energy conversion system(WECS)applications to obtain optimal power extraction.Hence,a novel and metaheuristic technique,named enhanced atom search optimization(EASO),is designed for a permanent magnet synchronous generator(PMSG)based WECS,which can be employed to track the maximum power point.One of the most promising benefits of this technique is powerful global search capability that leads to fast response and high-quality optimal solution.Besides,in contrast with other conventional meta-heuristic techniques,EASO is extremely not relying on the original solution,which can avoid sinking into a low-quality local maximum power point(LMPP)by realizing an appropriate trade-off between global exploration and local exploitation.At last,simulations employing two case studies through Matlab/Simulink validate the practicability and effectiveness of the proposed techniques for optimal proportional-integral-derivative(PID)control parameters tuning of PMSG based WECS under a variety of wind conditions. 展开更多
关键词 Enhanced atom search optimization permanent magnetic synchronous generator maximum power point tracking wind energy conversion system
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部