期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn_(1+x)Co_(1-x)Ge alloys 被引量:5
1
作者 马胜灿 王敦辉 +3 位作者 轩海成 沈凌佳 曹庆琪 都有为 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期411-414,共4页
We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferr... We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x = 0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper. 展开更多
关键词 Mn/Co ratio magnetic transition magnetocaloric properties magnetic hysteresis losses
下载PDF
Magnetostrictive and Kinematic Model Considering the Dynamic Hysteresis and Energy Loss for GMA 被引量:3
2
作者 Huifang LIU Xingwei SUN +2 位作者 Yifei GAO Hanyu WANG Zijin GAO 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期241-255,共15页
Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ... Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D'Alembert's principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally. 展开更多
关键词 Giant magnetostrictive actuator · Kinematic model · Magnetostrictive model · magnetic hysteresis · Energy loss
下载PDF
Influence of partial substitution of cerium for lanthanum on magnetocaloric properties of La_(1–x)Ce_xFe_(11.44)Si_(1.56) and their hydrides 被引量:2
3
作者 慕利娟 黄焦宏 +3 位作者 张文佳 刘翠兰 王高峰 赵增祺 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第12期1135-1139,共5页
The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type ... The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change. 展开更多
关键词 La1–xCexFe11.44Si1.56Hy isothermal entropy change Curie temperature magnetic hysteresis loss rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部