The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of th...The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed.展开更多
This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystall...This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.展开更多
In course of a direct calculation we demonstrate the activity of parameters of the Lorentz transformation entering the original electric and magnetic field vectors E and H. The validity of the transformation is shown ...In course of a direct calculation we demonstrate the activity of parameters of the Lorentz transformation entering the original electric and magnetic field vectors E and H. The validity of the transformation is shown with the aid of the relation E <sup>2</sup>- H<sup>2</sup> = E'<sup>2</sup>- H'<sup>2 </sup>which holds for any suitable pair of the vectors E, H and E', H'. No special geometry of the vector pairs entering (E, H) and (E ', H') is assumed. The only limit applied in the paper concerns the velocity ratio betweeen v and c which should be smaller than unity.展开更多
Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron ...Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron fines. The separation results of the three iron samples are as follows: iron grade 66.77%- 67.98% and the recovery of iron 69.26%-70.70% by the FIMS process with flocculants. The comparative results show that under the same separation conditions the F1MS process can effectively increase the recovery of iron by 10. 97%- 15.73%. The flowsheet results confirm the reliability of the process in a SHP high intensity magnetic separator. The concentrate product can he used as raw materials for direct reduction iron-smelting. The hydrolyzed and causticized flocculants can selectively flocculate fine feebly-magnetic iron mineral particles to increase their apparent separation sizes. The larger the separation size, the stronger the magnetic force. By comparing the separation results of the three samples it is found that among the three samples the higher the limonite content, the better the separation result. This means that the separation result relates closely to the flocculation process and the adding pattern of the flocculant.展开更多
We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are th...We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.展开更多
A high-yield and beam-stable neutron tube can be applied in many fields.It is of great significance to the optimal external magnetic field intensity of the cold-cathode Penning ion source(PIS)and precisely controls th...A high-yield and beam-stable neutron tube can be applied in many fields.It is of great significance to the optimal external magnetic field intensity of the cold-cathode Penning ion source(PIS)and precisely controls the movement of deuterium(D),tritium(T)ions and electrons in the source of the neutron tubes.A cold-cathode PIS is designed based on the solenoidal magnetic field to obtain better uniformity of the magnetic field and higher yield of the neutron tube.The degree of magnetic field uniformity among the magnetic block,double magnetic rings and solenoidal ion sources is compared using finite element simulation methods.Using drift diffusion approximation and a magnetic field coupling method,the plasma distribution of hydrogen and the relationship between plasma density and magnetic field intensity at 0.06 Pa pressure and a solenoid magnetic field are obtained.The results show that the solenoidal ion source has the most uniform magnetic field distribution.The optimum magnetic field strength of about 0.1 T is obtained in the ion source at an excitation voltage of 1 V.The maximum average number density of monatomic hydrogen ions(H+)is 1×108 m−3,and an ion-beam current of about 14.51μA is formed under the−5000 V extraction field.The study of the solenoidal magnetic field contributes to the understanding of the particle dynamics within the PIS and provides a reference for the further improvement of the source performance of the neutron tube in the future.展开更多
The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency com...The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency communications.However,the magnetic emission intensity,defined by the perturbation ability,of current commercially applied amorphous alloys,such as Metglas,cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss.Herein,a multi-phase Metglas amorphous alloy was constructed by incorporatingα-Fe nanocrystals using rapid annealing to manipulate the domain movement.It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms.Moreover,the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites(MFC).Enhancements of magnetic emission intensity are found at 93.3%and 49.2%at the first and second harmonic frequencies compared with the unmodified alloy vibrator.Therefore,the approach leads to the development of high-performance communication with a novel standard for evaluation.展开更多
Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by addin...Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy 3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy 3+ )=30∶1. The modification and formation mechanism of Re xFe 3- xO 4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.展开更多
This study analyzes aeromagnetic data over a section of Gwagwalada in Abuja.The data were obtained from the Nigerian Geological Survey Agency acquired at 100 m terrain clearance.The study area spans longitudes 7.0875 ...This study analyzes aeromagnetic data over a section of Gwagwalada in Abuja.The data were obtained from the Nigerian Geological Survey Agency acquired at 100 m terrain clearance.The study area spans longitudes 7.0875 E to 7.1458 E and latitude 8.9625 N to 9.0 N(about 27 km^(2)).The dataset was reduced to the equator(RTE)and downward continued by 50 m.Analytic signal filter was applied on TMI-RTE grid to detect the edges of the magnetic bodies present.The structure was observed to trend NE-SW.The CET lineament map reveals intersections such as junctions and corners on the map.This revealed structure liable for potential mineralization zone.Euler deconvolution technique applied over the transformed dataset ascertain the location and depth of the structure,having a maximum depth of about 421 m and a minimum of about 59 m.Variation in magnetic depth and susceptibility contrast is specified by the gridded SPI depth map.展开更多
In order to investigate the effect of magnetic field on the liquid-liquid extraction, the extraction in the acetone-water-trichloroethane system was studied under magnetic field with different magnetic induction inten...In order to investigate the effect of magnetic field on the liquid-liquid extraction, the extraction in the acetone-water-trichloroethane system was studied under magnetic field with different magnetic induction intensity.The results showed that the effect of magnetic field was positive in the extraction process, and the partition coeffi-cient and the yield of acetone increased-with the increasing magnetic induction intensity by 5.16%-8.35% and 1.85%-5.70% respectively. The effect of magnetic field on the extraction was intensified when the temperature became, higher. The experimental data of the partition coefficient of acetone were correlated by the method of least square in terms of a power-law correlation.展开更多
For the first time, we developed porous Pt-Ni alloying nanoparticles with predominant(111) facets under intense magnetic fields. Electrochemical analysis revealed that the Pt-Ni alloying nanoparticles obtained at 2 Te...For the first time, we developed porous Pt-Ni alloying nanoparticles with predominant(111) facets under intense magnetic fields. Electrochemical analysis revealed that the Pt-Ni alloying nanoparticles obtained at 2 Tesla exhibited a superior catalytic activity and durability for oxygen reduction reaction. This work demonstrated that the imposition of intense magnetic field could be considered as a new approach for developing efficient alloying electrocatalysts with preferential facets.展开更多
The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate...The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment.展开更多
A new permanent magnetic separator was introduced to treat the ores with the characteristics of weak magnetic iron minerals and in a fine size range. The new machine was applied to the iron removal from potash feldspa...A new permanent magnetic separator was introduced to treat the ores with the characteristics of weak magnetic iron minerals and in a fine size range. The new machine was applied to the iron removal from potash feldspar. The effects of the magnetic field intensity, pulp density and grinding fineness on the iron removal were investigated. The optimized operation parameters were achieved and listed as follows: the -0.074 mm content is 85%, the pulp density is 45% and the magnetic field strength is 2T. A close test of middles regrinding was also carried out to improve concentrate yield. The data show that the grade of TFe(total iron) in potash feldspar product decreased from 1.31% to 0.21% and the concentrate yield reached 85.32%. All the results indicated that the traditonal high-intensity electromagnetic separators can be betterly substituted by the new permanent magnetic separator. This study may provide the theoretical evidence for iron removal from potash feldspar.展开更多
We used the Jordan-Wigner transform and the invariant eigenoperator method to study the magnetic phase diagram and the magnetization curve of the spin-1/2 alternating ferrimagnetic diamond chain in an external magneti...We used the Jordan-Wigner transform and the invariant eigenoperator method to study the magnetic phase diagram and the magnetization curve of the spin-1/2 alternating ferrimagnetic diamond chain in an external magnetic field at finite temperature.The magnetization versus external magnetic field curve exhibits a 1/3 magnetization plateau at absolute zero and finite temperatures,and the width of the 1/3 magnetization plateau was modulated by tuning the temperature and the exchange interactions.Three critical magnetic field intensities H_(CB),H_(CE)and H_(CS) were obtained,in which the H_(CB) and H_(CE)correspond to the appearance and disappearance of the 1/3 magnetization plateau,respectively,and the higher H_(CS) correspond to the appearance of fully polarized magnetization plateau of the system.The energies of elementary excitation hω_(σ,k)(σ=1,2,3)present the extrema of zero at the three critical magnetic fields at 0 K,i.e.,[hω_(3,k)(H_(CB)]_(min)=0,[hω_(2,k)(H_(CE)]_(max)=0 and[hω_(2,k)(H_(CS)]_(min)=0,and the magnetic phase diagram of magnetic field versus different exchange interactions at 0 K was established by the above relationships.According to the relationships between the system’s magnetization curve at finite temperatures and the critical magnetic field intensities,the magnetic field-temperature phase diagram was drawn.It was observed that if the magnetic phase diagram shows a three-phase critical point,which is intersected by the ferrimagnetic phase,the ferrimagnetic plateau phase,and the Luttinger liquid phase,the disappearance of the 1/3 magnetization plateau would inevitably occur.However,the 1/3 magnetization plateau would not disappear without the three-phase critical point.The appearance of the 1/3 magnetization plateau in the low temperature region is the macroscopic manifestations of quantum effect.展开更多
This study presents the effect of the magnetic field with constant intensity on the pulsatile flow through a rigid tube. Basing on the experimental results, the influence of the magnetic field on the blood viscosity i...This study presents the effect of the magnetic field with constant intensity on the pulsatile flow through a rigid tube. Basing on the experimental results, the influence of the magnetic field on the blood viscosity is considered The analytic solution of the pulsatile flow through a rigid tube under constant magnetic field intensitier and the effect of the magnetic field on the velocity distribution, flow and impedance in a rigid tube are given. this investigation is valuable for understanding the influence of the magnetic field on the blood circulation.展开更多
Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear...Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear combined and valve typed MR damper is designed and manufactured, and the dynamic properties under sinusoidal excitations are experimentally studied. The experiment results show that the maximum damping force of the MR damper at the full magnetic intensity reaches about 20 kN while the maximum power required is less than 50 W, which predicts that the MR damper will be a powerful measurement for semi active vibration control of civil infrastructures.展开更多
An experimental system has been built to produce and measure the magnetic field in the backward ejected matter during hypervelocity impact. The designs of measurement system and coil, the choice of associated equipmen...An experimental system has been built to produce and measure the magnetic field in the backward ejected matter during hypervelocity impact. The designs of measurement system and coil, the choice of associated equipment, and the system calibration are also described in detail. The measurement of magnetic induction intensity for different given coil positions and azimuth angles are performed with two-stage light-gas gun. On condition that impact velocities are approximately equal and incidence angles are 45°, 60° and 90° respectively, the relationship between average magnetic induction intensity and impact angle at different time spans is obtained. Experimental results show that the average magnetic induction intensity with incidence angle of 90° is larger than those with incidence angles of 45°and 60°.展开更多
The grounding grid buried in the earth will become a hidden danger to the safety of substations due to some faults of breaks or thinner conductors in corrosion.A novel method to get accurate status of grounding grid w...The grounding grid buried in the earth will become a hidden danger to the safety of substations due to some faults of breaks or thinner conductors in corrosion.A novel method to get accurate status of grounding grid was proposed based on measuring magnetic induction intensity.The basic structure of grounding grid without working drawing was concluded,and the positions and the status of faults were diagnosed by this method.The completed detecting system,including hardware device of data measurement,diagnosis,and analysis software,was introduced concisely.The results of simulations and applications show that this method is simple and effective in the practical engineering.展开更多
The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HR...The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HRTEM and VSM. The results show that with the increase of magnetic flux densities, the changing trend of the average particle size is the same as the coercive force except 6 T. Under 6 T condition, the thin film became the mixture of bcc and fcc phases, which leads to slight increase of the coercive force. In addition, the HRTEM result shows the short-range ordered clusters (embryos) or nucleation rate of thin films increase with increasing magnetic flux densities.展开更多
This paper investigates the changes of phase and apparent morphology under the combined effects of an intense magnetic field and temperature field.The effect of different roasting conditions on the digestion performan...This paper investigates the changes of phase and apparent morphology under the combined effects of an intense magnetic field and temperature field.The effect of different roasting conditions on the digestion performance of roasted ore is also studied.The results indicate that roasting pretreatment under high magnetic fields can change the microstructure and digestion performance of bauxite.The Al phase changed faster of high iron bauxite than that of low iron bauxite.The digestion performance of low iron bauxite improved significantly through roasting pretreatment in intense magnetic field. But the digestion performance of bauxite get worse with the iron content in bauxite increase,because the high iron content of bauxite lead the shielding effect of magnetic field and make the crystal structure of bauxite stably,the surface area or low iron bauxite increased obviously during pretreatment.The optimal pretreatment condition of low iron bauxite is roasting temperature of 550℃,roasting time of 60min and magnetic field intensity of 6T,while for the high iron is roasting temperature of 500℃,roasting time of 60min and magnetic field intensity of 9T.展开更多
基金This paper is supported by“National Natural Science Foundation of China(Grant No.42204106)”.
文摘The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed.
文摘This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.
文摘In course of a direct calculation we demonstrate the activity of parameters of the Lorentz transformation entering the original electric and magnetic field vectors E and H. The validity of the transformation is shown with the aid of the relation E <sup>2</sup>- H<sup>2</sup> = E'<sup>2</sup>- H'<sup>2 </sup>which holds for any suitable pair of the vectors E, H and E', H'. No special geometry of the vector pairs entering (E, H) and (E ', H') is assumed. The only limit applied in the paper concerns the velocity ratio betweeen v and c which should be smaller than unity.
文摘Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron fines. The separation results of the three iron samples are as follows: iron grade 66.77%- 67.98% and the recovery of iron 69.26%-70.70% by the FIMS process with flocculants. The comparative results show that under the same separation conditions the F1MS process can effectively increase the recovery of iron by 10. 97%- 15.73%. The flowsheet results confirm the reliability of the process in a SHP high intensity magnetic separator. The concentrate product can he used as raw materials for direct reduction iron-smelting. The hydrolyzed and causticized flocculants can selectively flocculate fine feebly-magnetic iron mineral particles to increase their apparent separation sizes. The larger the separation size, the stronger the magnetic force. By comparing the separation results of the three samples it is found that among the three samples the higher the limonite content, the better the separation result. This means that the separation result relates closely to the flocculation process and the adding pattern of the flocculant.
基金Supported by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences under Grant No U1531102the Fundamental Research Funds for the Central Universities under Grant No HEUCF181116the National Natural Science Foundation of China under Grant Nos61107059,61077047 and 11264001
文摘We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.
基金supported by the China Jilin Province Science and Technology Development Project (No. 20190303101SF)the Sichuan Provincial Higher Education Key Laboratory Criminal Investigation Project-Criminal Science and Technology Laboratory (Sichuan Police College) (No. 2018YB04)+1 种基金Shanghai Jiao Tong Universitythe China Institute of Atomic Energy for their strong support
文摘A high-yield and beam-stable neutron tube can be applied in many fields.It is of great significance to the optimal external magnetic field intensity of the cold-cathode Penning ion source(PIS)and precisely controls the movement of deuterium(D),tritium(T)ions and electrons in the source of the neutron tubes.A cold-cathode PIS is designed based on the solenoidal magnetic field to obtain better uniformity of the magnetic field and higher yield of the neutron tube.The degree of magnetic field uniformity among the magnetic block,double magnetic rings and solenoidal ion sources is compared using finite element simulation methods.Using drift diffusion approximation and a magnetic field coupling method,the plasma distribution of hydrogen and the relationship between plasma density and magnetic field intensity at 0.06 Pa pressure and a solenoid magnetic field are obtained.The results show that the solenoidal ion source has the most uniform magnetic field distribution.The optimum magnetic field strength of about 0.1 T is obtained in the ion source at an excitation voltage of 1 V.The maximum average number density of monatomic hydrogen ions(H+)is 1×108 m−3,and an ion-beam current of about 14.51μA is formed under the−5000 V extraction field.The study of the solenoidal magnetic field contributes to the understanding of the particle dynamics within the PIS and provides a reference for the further improvement of the source performance of the neutron tube in the future.
基金supported by the Key Research and Development Program of Hubei Province(No.2021BAA214)the Open Fund of Sanya Science and Education Innovation Park of Wuhan University of Technology(Nos.2021KF0022,2021KF0013,and 2020KF0026)+2 种基金Independent Innovation Projects of the Hubei Longzhong Laboratory(Nos.2022ZZ-34 and 2022ZZ-35)the National Science Fund for Distinguished Young Scholars of Hubei Province(No.201CFA067)the National innovation and entrepreneurship training program for college students(Nos.202310497010 and S202310497026).
文摘The perturbation in the magnetic field generated by the rotation or oscillation of magnetic domains in magnetic materials can emit low-frequency electromagnetic waves,which are expected to be used in low-frequency communications.However,the magnetic emission intensity,defined by the perturbation ability,of current commercially applied amorphous alloys,such as Metglas,cannot meet the application requirements for low-frequency antennas due to the domain motion energy loss.Herein,a multi-phase Metglas amorphous alloy was constructed by incorporatingα-Fe nanocrystals using rapid annealing to manipulate the domain movement.It was found that 3.89 times higher magnetic emission intensity is obtained compared to the pristine due to the synergism of the deformation and displacement mechanisms.Moreover,the low-frequency magnetic emission performance verification was carried out by preparing magnetoelectric composites as the antenna vibrator by assembling the alloy and macro piezoelectric fiber composites(MFC).Enhancements of magnetic emission intensity are found at 93.3%and 49.2%at the first and second harmonic frequencies compared with the unmodified alloy vibrator.Therefore,the approach leads to the development of high-performance communication with a novel standard for evaluation.
文摘Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy 3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy 3+ )=30∶1. The modification and formation mechanism of Re xFe 3- xO 4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.
文摘This study analyzes aeromagnetic data over a section of Gwagwalada in Abuja.The data were obtained from the Nigerian Geological Survey Agency acquired at 100 m terrain clearance.The study area spans longitudes 7.0875 E to 7.1458 E and latitude 8.9625 N to 9.0 N(about 27 km^(2)).The dataset was reduced to the equator(RTE)and downward continued by 50 m.Analytic signal filter was applied on TMI-RTE grid to detect the edges of the magnetic bodies present.The structure was observed to trend NE-SW.The CET lineament map reveals intersections such as junctions and corners on the map.This revealed structure liable for potential mineralization zone.Euler deconvolution technique applied over the transformed dataset ascertain the location and depth of the structure,having a maximum depth of about 421 m and a minimum of about 59 m.Variation in magnetic depth and susceptibility contrast is specified by the gridded SPI depth map.
基金Supported by the Program on Technological Development Plan of Tianjin (No.033180611).
文摘In order to investigate the effect of magnetic field on the liquid-liquid extraction, the extraction in the acetone-water-trichloroethane system was studied under magnetic field with different magnetic induction intensity.The results showed that the effect of magnetic field was positive in the extraction process, and the partition coeffi-cient and the yield of acetone increased-with the increasing magnetic induction intensity by 5.16%-8.35% and 1.85%-5.70% respectively. The effect of magnetic field on the extraction was intensified when the temperature became, higher. The experimental data of the partition coefficient of acetone were correlated by the method of least square in terms of a power-law correlation.
基金financial support from the National Natural Science Foundation of China (Grant No. 51401134)the Scientific Research Funding Project of Liaoning Education Department (Grant No. LG201924)+1 种基金the Australian Research Council (ARCDE180101030) during the course of this work。
文摘For the first time, we developed porous Pt-Ni alloying nanoparticles with predominant(111) facets under intense magnetic fields. Electrochemical analysis revealed that the Pt-Ni alloying nanoparticles obtained at 2 Tesla exhibited a superior catalytic activity and durability for oxygen reduction reaction. This work demonstrated that the imposition of intense magnetic field could be considered as a new approach for developing efficient alloying electrocatalysts with preferential facets.
基金Projects(U1202274,51004033,51204040,50974035)supported by the National Natural Science Foundation of ChinaProjects(2010AA03A405,2012AA062303)supported by the National High Technology Research and Development Program(863 Prograam)of ChinaProject(N100302005)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment.
基金Funded by the National High-tech R&D Program of China(No.2007AA06Z123)the Hubei Provincial Key Laboratory of Pollutant Analysis and Recycling Project(KY2010G19)the Independent Innovation Research Fund of Wuhan University of Technology(2010-YB-16)
文摘A new permanent magnetic separator was introduced to treat the ores with the characteristics of weak magnetic iron minerals and in a fine size range. The new machine was applied to the iron removal from potash feldspar. The effects of the magnetic field intensity, pulp density and grinding fineness on the iron removal were investigated. The optimized operation parameters were achieved and listed as follows: the -0.074 mm content is 85%, the pulp density is 45% and the magnetic field strength is 2T. A close test of middles regrinding was also carried out to improve concentrate yield. The data show that the grade of TFe(total iron) in potash feldspar product decreased from 1.31% to 0.21% and the concentrate yield reached 85.32%. All the results indicated that the traditonal high-intensity electromagnetic separators can be betterly substituted by the new permanent magnetic separator. This study may provide the theoretical evidence for iron removal from potash feldspar.
基金the National Natural Science Foundation of China(Grant Nos.11374215 and 11704262)the Scientific Study Project from Education Department of Liaoning Province of China(Grant No.LJ2019004)the Natural Science Foundation Guidance Project of Liaoning Province of China(Grant No.2019-ZD-0070).
文摘We used the Jordan-Wigner transform and the invariant eigenoperator method to study the magnetic phase diagram and the magnetization curve of the spin-1/2 alternating ferrimagnetic diamond chain in an external magnetic field at finite temperature.The magnetization versus external magnetic field curve exhibits a 1/3 magnetization plateau at absolute zero and finite temperatures,and the width of the 1/3 magnetization plateau was modulated by tuning the temperature and the exchange interactions.Three critical magnetic field intensities H_(CB),H_(CE)and H_(CS) were obtained,in which the H_(CB) and H_(CE)correspond to the appearance and disappearance of the 1/3 magnetization plateau,respectively,and the higher H_(CS) correspond to the appearance of fully polarized magnetization plateau of the system.The energies of elementary excitation hω_(σ,k)(σ=1,2,3)present the extrema of zero at the three critical magnetic fields at 0 K,i.e.,[hω_(3,k)(H_(CB)]_(min)=0,[hω_(2,k)(H_(CE)]_(max)=0 and[hω_(2,k)(H_(CS)]_(min)=0,and the magnetic phase diagram of magnetic field versus different exchange interactions at 0 K was established by the above relationships.According to the relationships between the system’s magnetization curve at finite temperatures and the critical magnetic field intensities,the magnetic field-temperature phase diagram was drawn.It was observed that if the magnetic phase diagram shows a three-phase critical point,which is intersected by the ferrimagnetic phase,the ferrimagnetic plateau phase,and the Luttinger liquid phase,the disappearance of the 1/3 magnetization plateau would inevitably occur.However,the 1/3 magnetization plateau would not disappear without the three-phase critical point.The appearance of the 1/3 magnetization plateau in the low temperature region is the macroscopic manifestations of quantum effect.
基金Project supported by the National Natural Science Foundation of China
文摘This study presents the effect of the magnetic field with constant intensity on the pulsatile flow through a rigid tube. Basing on the experimental results, the influence of the magnetic field on the blood viscosity is considered The analytic solution of the pulsatile flow through a rigid tube under constant magnetic field intensitier and the effect of the magnetic field on the velocity distribution, flow and impedance in a rigid tube are given. this investigation is valuable for understanding the influence of the magnetic field on the blood circulation.
文摘Magnetorheological (MR) fluid is a kind of smart material whose rheological properties can be rapidly varied in magnetic field. To make full use of the advantages of MR fluid to devices, a model of double ended, shear combined and valve typed MR damper is designed and manufactured, and the dynamic properties under sinusoidal excitations are experimentally studied. The experiment results show that the maximum damping force of the MR damper at the full magnetic intensity reaches about 20 kN while the maximum power required is less than 50 W, which predicts that the MR damper will be a powerful measurement for semi active vibration control of civil infrastructures.
基金National Natural Science Foundation of China (10772028)Talent Resources Development Special Funds of Shenyang (20081400103009)Doctoral Initiation Special Fund of Shenyang Ligong University
文摘An experimental system has been built to produce and measure the magnetic field in the backward ejected matter during hypervelocity impact. The designs of measurement system and coil, the choice of associated equipment, and the system calibration are also described in detail. The measurement of magnetic induction intensity for different given coil positions and azimuth angles are performed with two-stage light-gas gun. On condition that impact velocities are approximately equal and incidence angles are 45°, 60° and 90° respectively, the relationship between average magnetic induction intensity and impact angle at different time spans is obtained. Experimental results show that the average magnetic induction intensity with incidence angle of 90° is larger than those with incidence angles of 45°and 60°.
基金This work was supported in part by the Scientific Research Foundation of Doctor Degree in North China Electric Power University(200912008).
文摘The grounding grid buried in the earth will become a hidden danger to the safety of substations due to some faults of breaks or thinner conductors in corrosion.A novel method to get accurate status of grounding grid was proposed based on measuring magnetic induction intensity.The basic structure of grounding grid without working drawing was concluded,and the positions and the status of faults were diagnosed by this method.The completed detecting system,including hardware device of data measurement,diagnosis,and analysis software,was introduced concisely.The results of simulations and applications show that this method is simple and effective in the practical engineering.
文摘The nanocrystalline Fe64Ni36 thin films were prepared by molecular-beam- vapor deposition under different magnetic flux densities. The microstructure and magnetic properties of thin films were examined by AFM, TEM, HRTEM and VSM. The results show that with the increase of magnetic flux densities, the changing trend of the average particle size is the same as the coercive force except 6 T. Under 6 T condition, the thin film became the mixture of bcc and fcc phases, which leads to slight increase of the coercive force. In addition, the HRTEM result shows the short-range ordered clusters (embryos) or nucleation rate of thin films increase with increasing magnetic flux densities.
基金Item Sponsored by the Natural Science Foundation of China(NO.51004033,No.50934005,No.50974035,No.51074047)National 863 plan(2010AA03A405,2012AA061403)+1 种基金Operation expenses for universities'basic scientific research(N100302005)The doctoral fund of EDU gov(20050145029)
文摘This paper investigates the changes of phase and apparent morphology under the combined effects of an intense magnetic field and temperature field.The effect of different roasting conditions on the digestion performance of roasted ore is also studied.The results indicate that roasting pretreatment under high magnetic fields can change the microstructure and digestion performance of bauxite.The Al phase changed faster of high iron bauxite than that of low iron bauxite.The digestion performance of low iron bauxite improved significantly through roasting pretreatment in intense magnetic field. But the digestion performance of bauxite get worse with the iron content in bauxite increase,because the high iron content of bauxite lead the shielding effect of magnetic field and make the crystal structure of bauxite stably,the surface area or low iron bauxite increased obviously during pretreatment.The optimal pretreatment condition of low iron bauxite is roasting temperature of 550℃,roasting time of 60min and magnetic field intensity of 6T,while for the high iron is roasting temperature of 500℃,roasting time of 60min and magnetic field intensity of 9T.