期刊文献+
共找到170篇文章
< 1 2 9 >
每页显示 20 50 100
Effect of magnetic nanoparticles on magnetic field homogeneity 被引量:1
1
作者 郭斯琳 易文通 李壮壮 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期188-192,共5页
The mechanism of magnetic nanoparticles(MNPs)affecting magnetic field uniformity is studied in this work.The spatial distribution of MNPs in liquid is simulated based on Monte Carlo method.The induced field of the sin... The mechanism of magnetic nanoparticles(MNPs)affecting magnetic field uniformity is studied in this work.The spatial distribution of MNPs in liquid is simulated based on Monte Carlo method.The induced field of the single MNP is combined with the magnetic field distribution of magnetofluid.In the simulation,magnetic field uniformity is described by a statistical distribution.As the chemical shift(CS)and full width at half maximum(FWHM)of magnetic resonance(MR)spectrum can reflect the uniformity of magnetic field,the simulation is verified by spectrum experiment.Simulation and measurement results prove that the CS and FWHM of the MR spectrum are basically positively correlated with the concentration of MNPs and negatively correlated with the temperature.The research results can explain how MNPs play a role in MR by affecting the uniform magnetic field,which is of great significance in improving the temperature measurement accuracy of magnetic nanothermometers and the spatial resolution of magnetic particle imaging. 展开更多
关键词 magnetic nanoparticle field distribution Monte Carlo method
下载PDF
PREPARATION AND CHARACTERIZATION OF PVA COATED MAGNETIC NANOPARTICLES 被引量:6
2
作者 Francoise Winnik 邱星屏 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第6期535-539,共5页
Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitation of Fe(II)/Fe(III) salts in 1.5 mol/L NH4OH solution at 70 degreesC in the presence of PVA. The resultant... Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitation of Fe(II)/Fe(III) salts in 1.5 mol/L NH4OH solution at 70 degreesC in the presence of PVA. The resultant colloidal particles have core-shell structures, in which the iron oxide crystallites form the cores and PVA chains form the shells. The hydrodynamic diameter of the colloidal particles is in the range of 108 to 155 nm, which increases with increasing PVA concentration from 5 wt% to 20 wt%, The size of the magnetic cores is ca. 5-10 nm, which is relatively independent of PVA concentration. Under transmission electron microscopic (TEM) examination, the magnetic cores exhibit somewhat irregular shapes varying from spherical, oval, to cubic. Magnetometry measurement revealed that the PVA coated magnetic particles are superparamagnetic. The saturation magnetization of 5 wt% and 20 wt% PVA ferrofluids at 300 K is 54 and 49 emu/g, respectively. All the PVA ferrofluids exhibited excellent colloidal stability in pure water and phosphate buffer saline (PBS, pH = 7.4). The ferrofluids can remain stable in above solutions for more than three months at 4 degreesC. 展开更多
关键词 magnetic nanoparticles polyvinyl alcohol FERROFLUIDS core-shell structure
下载PDF
Simulation research on effect of magnetic nanoparticles on physical process of magneto–acoustic tomography with magnetic induction 被引量:3
3
作者 闫孝姮 张莹 刘国强 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期378-385,共8页
Magneto–acoustic tomography with magnetic induction(MAT-MI) is a multiphysics coupled imaging technique that is combined with electrical impedance tomography and ultrasound imaging. In order to study the influence ... Magneto–acoustic tomography with magnetic induction(MAT-MI) is a multiphysics coupled imaging technique that is combined with electrical impedance tomography and ultrasound imaging. In order to study the influence of adding magnetic nanoparticles as a contrast agent for MAT-MI on its physical process, firstly, we analyze and compare the electromagnetic and acoustical properties of MAT-MI theoretically before and after adding magnetic nanoparticles, and then construct a two-dimensional(2 D) planar model. Under the guidance of space-time separation theory, we determine the reasonable simulation conditions and solve the electromagnetic field and sound field physical processes in the two modes by using the finite element method. The magnetic flux density, sound pressure distribution, and related one-dimensional(1 D), 2 D, and three-dimensional(3 D) images are obtained. Finally, we make a qualitative and quantitative analysis based on the theoretical and simulation results. The research results show that the peak time of the time item separated from the sound source has a corresponding relationship with the peak time of the sound pressure signal. At this moment, MAMPTMI produces larger sound pressure signals, and the sound pressure distribution of the MAMPT-MI is more uniform, which facilitates the detection and completion of sound source reconstruction. The research results may lay the foundation for the MAT-MI of magnetically responsive nanoparticle in subsequent experiments and even clinical applications. 展开更多
关键词 magneto-acoustic tomography with magnetic induction magnetic nanoparticles magnetic flux density sound pressure
下载PDF
Combined Effects of 50 Hz Magnetic Field and Magnetic Nanoparticles on the Proliferation and Apoptosis of PC12 Cells 被引量:2
4
作者 JIA Hong Li WANG Chao +4 位作者 LI Yue LU Yan WANG Ping Ping PAN Wei Dong SONG Tao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第2期97-105,共9页
Objective To investigate the bioeffects of extremely low frequency (ELF) magnetic field (MF) (50 Hz, 400 μT) and magnetic nanoparticles (MNPs) via cytotoxicity and apoptosis assays on PC12 cells. Methods MNPs... Objective To investigate the bioeffects of extremely low frequency (ELF) magnetic field (MF) (50 Hz, 400 μT) and magnetic nanoparticles (MNPs) via cytotoxicity and apoptosis assays on PC12 cells. Methods MNPs modified by SiO2 (MNP-SiO2) were characterized by transmission electron microscopy (TEM), dynamic light scattering and hysteresis loop measurement. PC12 cells were administrated with MNP-SiO2 with or without MF exposure for 48 h. Cytotoxicity and apoptosis were evaluated with MTI- assay and annexin V-FITC/PI staining, respectively. The morphology and uptake of MNP-SiO2 were determined by TEM. MF simulation was performed by Ansoft Maxwell based on the finite element method. Results MNP-SiO2 were identified as -20 nm (diameter) ferromagnetic particles. MNP-SiO2 reduced cell viability in a dose-dependent manner. MF also reduced cell viability with increasing concentrations of MNP-SiO2. MNP-SiO2 alone did not cause apoptosis in PC12 cells; instead, the proportion of apoptotic cells increased significantly under MF exposure and increasing doses of MNP-SiO2. MNP-SiO2 could be ingested and then cause a slight change in cell morphology. Conclusion Combined exposure of MF and MNP-SiO2 resulted in remarkable cytotoxicity and increased apoptosis in PC12 cells. The results suggested that MF exposure could strengthen the MF of MNPs, which may enhance the bioeffects of ELF MF. 展开更多
关键词 Extremely low frequency magnetic field magnetic nanoparticles CYTOTOXICITY APOPTOSIS MORPHOLOGY
下载PDF
Surface modification of magnetic nanoparticles in biomedicine 被引量:2
5
作者 储鑫 余靓 侯仰龙 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期1-8,共8页
Progress in surface modification of magnetic nanoparticles(MNPs) is summarized with regard to organic molecules,macromolecules and inorganic materials. Many researchers are now devoted to synthesizing new types of m... Progress in surface modification of magnetic nanoparticles(MNPs) is summarized with regard to organic molecules,macromolecules and inorganic materials. Many researchers are now devoted to synthesizing new types of multi-functional MNPs, which show great application potential in both diagnosis and treatment of disease. By employing an ever-greater variety of surface modification techniques, MNPs can satisfy more and more of the demands of medical practice in areas like magnetic resonance imaging(MRI), fluorescent marking, cell targeting, and drug delivery. 展开更多
关键词 magnetic nanoparticles surface modification FUNCTIONALIZATION magnetic resonance imaging
下载PDF
Functionalized magnetic nanoparticles for drug delivery in tumor therapy 被引量:2
6
作者 李若男 达先鸿 +3 位作者 李翔 陆云姝 顾芬芬 刘艳 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期87-93,共7页
The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug del... The side effects of chemotherapy are mainly the poor control of drug release. Magnetic nanoparticles(MNPs) have super-paramagnetic behaviors which are preferred for biomedical applications such as in targeted drug delivery, besides, in magnetic recording, catalysis, and others. MNPs, due to high magnetization response, can be manipulated by the external magnetic fields to penetrate directly into the tumor, thus they can act as ideal drug carriers. MNPs also play a crucial role in drug delivery system because of their high surface-to-volume ratio and porosity. The drug delivery in tumor therapy is related to the sizes, shapes, and surface coatings of MNPs as carriers. Therefore, in this review, we first summarize the effects of the sizes, shapes, and surface coatings of MNPs on drug delivery, then discuss three types of drug release systems, i.e., p H-controlled, temperature-controlled, and magnetic-controlled drug release systems, and finally compare the principle of passive drug release with that of active drug release in tumor therapy. 展开更多
关键词 magnetic nanoparticles TUMOR drug carriers targeted therapy
下载PDF
Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer 被引量:2
7
作者 岳秀丽 马放 戴志飞 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期18-24,共7页
Key advances in multifunctional magnetic nanoparticles (MNPs) for magnetic resonance (MR) image-guided pho- tothermal therapy of cancer are reviewed. We briefly outline the design and fabrication of such multifunc... Key advances in multifunctional magnetic nanoparticles (MNPs) for magnetic resonance (MR) image-guided pho- tothermal therapy of cancer are reviewed. We briefly outline the design and fabrication of such multifunctional MNPs. Bimodal image-guided photothermal therapies (MR/fluorescence and MR/ultrasound) are also discussed. 展开更多
关键词 magnetic nanoparticles magnetic resonance imaging fluorescence imaging ultrasound imaging photothermal therapy
下载PDF
A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients 被引量:1
8
作者 Li Yi Ying Huang +1 位作者 Ting Wu Jun Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第32期3036-3046,共11页
C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. DNA from 70 stroke pa- tients and 70 healthy... C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. DNA from 70 stroke pa- tients and 70 healthy controls was extracted from saliva using a magnetic nanoparticles-based method and from blood using conventional methods. Real-time PCR results revealed that the C677T polymorphism was genotyped by PCR using DNA extracted from both saliva and blood samples. The genotype results were confirmed by gene sequencing, and results for saliva and blood samples were consistent. The mutation TT genotype frequency was significantly higher in the stroke group than in controls. Homocysteine levels were significantly higher than controls in both TT genotype groups. Therefore, this noninvasive magnetic nanoparticles-based method using saliva samples could be used to screen for the MTHFR C677T polymorphism in target populations. 展开更多
关键词 neural regeneration brain injury stroke magnetic nanoparticles SALIVA methylenetetrahydrofolatereductase HOMOCYSTEINE gene polymorphism gene screening grants-supported paper NEUROREGENERATION
下载PDF
Modification of Fe_3O_4 Magnetic Nanoparticles by L-dopa or Dopamine as an Enzyme Support 被引量:1
9
作者 PENG Hong ZHANG Xiao HUANG Kaixun XU Huibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期480-485,共6页
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi... Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles. 展开更多
关键词 Fe3O4 magnetic nanoparticles MODIFICATION TRYPSIN IMMOBILIZATION L-DOPA DOPAMINE
下载PDF
Activity estimation in radioimmunotherapy using magnetic nanoparticles 被引量:1
10
作者 Samira Rasaneh Hossein Rajabi Fariba Johari Daha 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2015年第2期203-208,共6页
Objective: Estimation of activity accumulated in tumor and organs is very important in predicting the response of radiopharmaceuticals treatment. In this study, we synthesized ~77Lutetium (177Lu)-trastuzumabiron ox... Objective: Estimation of activity accumulated in tumor and organs is very important in predicting the response of radiopharmaceuticals treatment. In this study, we synthesized ~77Lutetium (177Lu)-trastuzumabiron oxide nanoparticles as a double radiopharmaceutical agent for treatment and better estimation of organ activity in a new way by magnetic resonance imaging (MRI). Methods: ^177Lu-trastuzumab-iron oxide nanoparticles were synthesized and all the quality control tests such as labeling yield, nanoparticle size determination, stability in buffer and blood serum up to 4 d, immunoreactivity and biodistribution in normal mice were determined. In mice bearing breast tumor, liver and tumor activities were calculated with three methods: single photon emission computed tomography (SPECT), MRI and organ extraction, which were compared with each other. Results: The good results of quality control tests (labeling yield: 61%±2%, mean nanoparticle hydrodynamic size: 41±15 nm, stability in buffer: 86%±5%, stability in blood serum: 80%±3%, immunoreactivity: 80%±2%) indicated that ^177Lu-trastuzumab-iron oxide nanoparticles could be used as a double radiopharmaceutical agent in mice bearing tumor. Results showed that ^177Lu-trastuzumab-iron oxide nanoparticles with MRI had the ability to measure organ activities more accurate than SPECT. Conclusions: Co-conjugating radiopharmaceutical to MRI contrast agents such as iron oxide nanoparticles may be a good way for better dosimetry in nuclear medicine treatment. 展开更多
关键词 Radioimmunotherapy (RIT) activity estimation lutetium-177 HERCEPTIN magnetic nanoparticles magnetic resonance imaging (MRI)
下载PDF
Immobilized laccase on magnetic nanoparticles for enhanced lignin model compounds degradation 被引量:1
11
作者 Xinyan Chen Bin He +2 位作者 Mi Feng Dingwei Zhao Jian Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2152-2159,共8页
As a natural aromatic polymer,lignin has great potential but limited industrial application due to its complex chemical structure.Among strategies for lignin conversion,biodegradation has attracted promising interest ... As a natural aromatic polymer,lignin has great potential but limited industrial application due to its complex chemical structure.Among strategies for lignin conversion,biodegradation has attracted promising interest recently in term of efficiency,selectivity and mild condition.In order to overcome the issues of poor stability and non-reusability of enzyme in the biodegradation of lignin,this work explored a protocol of immobilized laccase on magnetic nanoparticles(MNPs)with rough surfaces for enhanced lignin model compounds degradation.Scanning electron microscope with energy dispersive spectrometer(SEM-EDS),flourier transformation infrared spectroscopy(FTIR)and thermal gravimetric analysis(TGA)were utilized to characterize the immobilization of laccase.The results showed a maximum activity recovery of 64.7%towards laccase when it was incubated with MNPs and glutaraldehyde(GA)with concentrations of 6 mg·ml^-1and 7.5 mg·ml^-1for 5 h,respectively.The immobilized laccase showed improved thermal stability and pH tolerance compared with free laccase,and remained more than 80%of its initial activity after 20 days of storage at 4℃.In addition,about 40%residual activity of the laccase remained after 8 times cycles.Gas chromatography–mass spectrometry(GC–MS)was utilized to characterize the products of lignin model compound degradation and activation,and the efficiency of immobilized laccase was calculated to be 1–5 times that of free laccase.It was proposed that the synergistic effect between MNPs and laccase displays an important role in the enhancement of stability and activity in lignin model compound biodegradation. 展开更多
关键词 LACCASE IMMOBILIZATION magnetic nanoparticles Lignin model compounds DEGRADATION
下载PDF
Structural and Magnetic Analyses of Magnetic Nanoparticles Coated with Oleate Molecules 被引量:1
12
作者 KailunYAO JinTAO +3 位作者 ZuliLIU QianghuaLU DongXI XiaopingLUO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期417-420,共4页
Physical and chemical properties of the magnetic nanoparticles coated with oleate have been investigated by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Mossbauer spectroscopy, su... Physical and chemical properties of the magnetic nanoparticles coated with oleate have been investigated by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, infrared spectra (IR) and the contact angle device. The results show that doped Al ions in Fe3O4 nanoparticles are located on the octahedral sites of the spinel structure. Oleate is coated on the magnetic nanoparticles with two layers by chemical absorbing, the outer layer can be washed away. The wetting of the surface of magnetic nanoparticles coated with monolayer has been changed from hydrophilicity to hydrophobicity, and the nanoparticles can be dispersed very well in some organic solutions. 展开更多
关键词 magnetic nanoparticles Contact angle SURFACTANT Mossbauer spectroscopy
下载PDF
Immobilization of Chitosanase on Magnetic Nanoparticles: Preparation, Characterization and Properties 被引量:1
13
作者 CHENG Yimeng LI Zhaoyue +5 位作者 SUN Huihui ZHAO Ling LIU Zhen CAO Rong LIU Qi MAO Xiangzhao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第5期1381-1388,共8页
Chitosanase could cleaveβ-1,4-linkage of chitosan to produce chitooligosaccharides(COS)with diverse biological activities.However,there are many limitations on the use of free chitosanase in industrial production.Enz... Chitosanase could cleaveβ-1,4-linkage of chitosan to produce chitooligosaccharides(COS)with diverse biological activities.However,there are many limitations on the use of free chitosanase in industrial production.Enzyme immobilization is generally considered a valuable strategy in industrial-scale applications.In this study,the chitosanase Csn-BAC from Bacillus sp.MD-5 was immobilized on Fe_(3)O_(4)-SiO_(2) magnetic nanoparticles(MNPs)to enhance its properties,which could be recovered easily from reaction media using magnetic separation.The activities of Csn-BAC immobilized with MNPs(MNPs@Csn-BAC)were de-termined with temperature and pH,and the thermal-and pH-stabilities,respectively.The reusability of the MNPs@Csn-BAC was determined in repeated reaction cycles.Immobilization enhanced the thermal and pH stability of Csn-BAC compared with the free enzyme.After eight reaction cycles using MNPs@Csn-BAC,the residual enzyme activity was 72.15%.Finally,the amount of COS released by MNPs@Csn-BAC was 1.86 times higher than that of the free Csn-BAC in the catalytic performance experiment.The immobilized Csn-BAC exhibits broad application prospects in the production of COS. 展开更多
关键词 CHITOSANASE IMMOBILIZATION magnetic nanoparticles CHITOOLIGOSACCHARIDES
下载PDF
Composite magnetic nanoparticles:Synthesis and cancer-related applications 被引量:1
14
作者 蔡苹 陈洪敏 谢晋 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期27-32,共6页
Recent advances in the preparation and applications of composite magnetic nanoparticles are reviewed and summa- rized, with a focus on cancer-related applications.
关键词 magnetic nanoparticles composite nanoparticles bio-applications surface modification
下载PDF
Magnetic Particle Imaging for Magnetic Hyperthermia Treatment: Visualization and Quantification of the Intratumoral Distribution and Temporal Change of Magnetic Nanoparticles in Vivo 被引量:5
15
作者 Tomomi Kuboyabu Isamu Yabata +4 位作者 Marina Aoki Natsuo Banura Kohei Nishimoto Atsushi Mimura Kenya Murase 《Open Journal of Medical Imaging》 2016年第1期1-15,共15页
Purpose: Magnetic hyperthermia treatment (MHT) is a strategy for cancer therapy using the tem-perature rise of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). Re-cently, a new imaging method c... Purpose: Magnetic hyperthermia treatment (MHT) is a strategy for cancer therapy using the tem-perature rise of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). Re-cently, a new imaging method called magnetic particle imaging (MPI) has been introduced. MPI allows imaging of the spatial distribution of MNPs. The purpose of this study was to investigate the feasibility of visualizing and quantifying the intratumoral distribution and temporal change of MNPs and predicting the therapeutic effect of MHT using MPI. Materials and Methods: Colon-26 cells (1 × 106 cells) were implanted into the backs of eight-week-old male BALB/c mice. When the tumor volume reached approximately 100 mm3, mice were divided into untreated (n = 10) and treated groups (n = 27). The tumors in the treated group were directly injected with MNPs (Resovist?) with iron concentrations of 500 mM (A, n = 9), 400 mM (B, n = 8), and 250 mM (C, n = 10), respectively, and MHT was performed using an AMF with a frequency of 600 kHz and a peak amplitude of 3.5 kA/m. The mice in the treated group were scanned using our MPI scanner immediately before, immediately after, 7 days, and 14 days after MHT. We drew a region of interest (ROI) on the tumor in the MPI image and calculated the average, maximum, and total MPI values and the number of pixels by taking the threshold value for extracting the contour as 40% of the maximum MPI value (pixel value) within the ROI. These parameters in the untreated group were taken as zero. We also measured the relative tumor volume growth (RTVG) defined by (V-V0)/V0, where V0 and V are the tumor volumes immediately before and after MHT, respectively. Results: The average, maximum, and total MPI values decreased up to 7 days after MHT and remained almost constant thereafter in all groups, whereas the number of pixels tended to increase with time. The RTVG values in Groups A and B were significantly lower than those in the control group 3 days or more and 5 days or more after MHT, respectively. The above four parameters were significantly inversely correlated with the RTVG values 5, 7, and 14 days after MHT. Conclusion: MPI can visualize and quantify the intratumoral distribution and temporal change of MNPs before and after MHT. Our results suggest that MPI will be useful for predicting the therapeutic effect of MHT and for the treatment planning of MHT. 展开更多
关键词 magnetic Particle Imaging magnetic Hyperthermia Treatment magnetic nanoparticles Intratumoral Distribution Temporal Change
下载PDF
Study on Tat Mediated Magnetic Nanoparticles Having Composite Targeting Function 被引量:1
16
作者 YAO Peng HUANG Jie +3 位作者 ZHAO Ai-jie KANG Chun-sheng CHANG Jin PU Pei-yu 《Chinese Journal of Biomedical Engineering(English Edition)》 2005年第4期150-155,共6页
This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix-O-Carboxylmethylated Chitosan (O-CMC) as a drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a ... This paper describes a new formulation of magnetic nanoparticles coated by a novel polymer matrix-O-Carboxylmethylated Chitosan (O-CMC) as a drug/gene carrier. The O-CMC magnetic nanoparticles were derivatized with a peptide sequence from the HIV-tat protein and transferrin to improve the translocational property and cellar uptake of the nanoparticles. To evaluate the O-MNPs-Tat-Tf as a drug carrier, Methotrexate (MTX) was incorporated as a model drug and MTX-loaded O-MNPs-Tat-Tf with an average diameter of 75 nm were prepared and characterized by TEM, AFM and VSM.The cytotoxicity of MTX-loaded O-MNPs-Tat-Tf was investigated with C6 cells. The results showed that the MTX-loaded O-MNPs-Tat-Tf retained significant antitumor toxicity. 展开更多
关键词 magnetic nanoparticles O-carboxylmethylated chitosan TAT TRANSFERRIN MTX TARGET Drug delivery system
下载PDF
Synthesis of ternary magnetic nanoparticles for enhanced catalytic conversion of biomass-derived methyl levulinate into γ-valerolactone
17
作者 Xueli Chen Tingting Zhao +6 位作者 Xuesong Zhang Yuxuan Zhang Haitao Yu Qian Lyu Xiwen Jia Lujia Han Weihua Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期430-441,I0010,共13页
Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst prepar... Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization. 展开更多
关键词 magnetic nanoparticles Bifunctional catalyst Biomass conversion Catalytic transfer hydrogenation γ-Valerolactone
下载PDF
Near-infrared dye-loaded magnetic nanoparticles as photoacoustic contrast agent for enhanced tumor imaging
18
作者 Chuang Gao Zi-Jian Deng +9 位作者 Dong Peng Yu-Shen Jin Yan Ma Yan-Yan Li Yu-Kun Zhu Jian-Zhong Xi Jie Tian Zhi-Fei Dai Chang-Hui Li Xiao-Long Liang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2016年第3期349-359,共11页
Objective: Photoacoustic(PA) tomography(PAT) has attracted extensive interest because of its optical absorption contrast and ultrasonic detection. This study aims to develop a biocompatible and biodegradable PA contra... Objective: Photoacoustic(PA) tomography(PAT) has attracted extensive interest because of its optical absorption contrast and ultrasonic detection. This study aims to develop a biocompatible and biodegradable PA contrast agent particularly promising for clinical applications in human body.Methods: In this study, we presented a PA contrast agent: 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)](DSPE-PEG)-coated superparamagnetic iron oxide(SPIO) nanoparticles(NPs) loaded with indocyanine green(ICG). We used ICG and SPIO NPs because both drugs are approved by the U.S. Food and Drug Administration. Given the strong absorption of near-infrared laser pulses, SPIO@DSPE-PEG/ICG NPs with a uniform diameter of ~28 nm could significantly enhance PA signals.Results: We demonstrated the contrast enhancement of these NPs in phantom and animal experiments, in which the in vivo circulation time of SPIO@DSPE-PEG/ICG NPs was considerably longer than that of free ICG. These novel NPs also displayed a high efficiency of tumor targeting.Conclusions: SPIO@DSPE-PEG/ICG NPs are promising PAT contrast agents for clinical applications. 展开更多
关键词 Indocyanine green magnetic nanoparticles photoacoustic tomography tumor imaging
下载PDF
Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination
19
作者 Dongze Ma Ye Tian +1 位作者 Tiefei He Xiaobiao Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第6期223-230,共8页
Novel magnetic nanoparticles(MNPs),Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2),were prepared by loading different amounts of SiO_(2) or/and PEG-(COOH)_(2) onto Fe_(3)O_(4) nanoparticles,and their feasib... Novel magnetic nanoparticles(MNPs),Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2),were prepared by loading different amounts of SiO_(2) or/and PEG-(COOH)_(2) onto Fe_(3)O_(4) nanoparticles,and their feasibility to be used as forward osmosis(FO)draw solutes was investigated.The characterization of the materials showed that,compared to normal Fe_(3)O_(4) nanoparticles,the modified MNPs exhibited enhanced dispersity and high osmotic pressure in aqueous solution.The FO experiment indicated that the synthesized draw solutes could obtain a water flux as high as 10 L·m^(-2)·h^(-1) with an aquaporin FO membrane.The optimal concentration of the added tetraethyl orthosilicate was 30%during the synthesis.The novel MNPs could be easily recovered from draw solutions by magnetic field,and the recovery rate of Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) was 83.95%and 63.37%,respectively.Moreover,after 5 recycles of reuse,the water flux of Fe_(3)O_(4)@SiO_(2) and Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) as draw solutes still remained 64.36%and 85.26%,respectively.The experimental results demonstrated that the synthesized core–shell magnetic nanoparticles are promising draw solutes,and the Fe_(3)O_(4)@SiO_(2)@PEG-(COOH)_(2) was more suitable to be used as draw solute in FO process. 展开更多
关键词 magnetic nanoparticles Forward osmosis Draw solute Fe_(3)O_(4) PEG-(COOH)_(2)
下载PDF
Performance Analysis of Magnetic Nanoparticles during Targeted Drug Delivery:Application of OHAM
20
作者 Muhammad Zafar Muhammad Saif Ullah +6 位作者 Tareq Manzoor Muddassir Ali Kashif Nazar Shaukat Iqbal HabibUllah Manzoor Rizwan Haider Woo Young Kim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期723-749,共27页
In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been ... In recent years,the emergence of nanotechnology experienced incredible development in the field of medical sciences.During the past decade,investigating the characteristics of nanoparticles during fluid flow has been one of the intriguing issues.Nanoparticle distribution and uniformity have emerged as substantial criteria in both medical and engineering applications.Adverse effects of chemotherapy on healthy tissues are known to be a significant concern during cancer therapy.A novel treatment method of magnetic drug targeting(MDT)has emerged as a promising topical cancer treatment along with some attractive advantages of improving efficacy,fewer side effects,and reduce drug dose.During magnetic drug targeting,the appropriate movement of nanoparticles(magnetic)as carriers is essential for the therapeutic process in the blood clot removal,infection treatment,and tumor cell treatment.In this study,we have numerically investigated the behavior of an unsteady blood flowinfused with magnetic nanoparticles during MDT under the influence of a uniform external magnetic field in a microtube.An optimal homotopy asymptotic method(OHAM)is employed to compute the governing equation for unsteady electromagnetohydrodynamics flow.The influence of Hartmann number(Ha),particle mass parameter(G),particle concentration parameter(R),and electro-osmotic parameter(k)is investigated on the velocity of magnetic nanoparticles and blood flow.Results obtained show that the electro-osmotic parameter,along with Hartmann’s number,dramatically affects the velocity of magnetic nanoparticles,blood flow velocity,and flow rate.Moreover,results also reveal that at a higher Hartman number,homogeneity in nanoparticles distribution improved considerably.The particle concentration andmass parameters effectively influence the capturing effect on nanoparticles in the blood flow using a micro-tube for magnetic drug targeting.Lastly,investigation also indicates that the OHAM analysis is efficient and quick to handle the system of nonlinear equations. 展开更多
关键词 Hartmann number magnetic nanoparticles nonlinear analysis targeted drug delivery optimal homotopy asymptotic method(OHAM)
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部