In order to measure boundary electrostatic and magnetic fluctuations simultaneously,a combined Langmuir-magnetic probe(CLMP)has been designed and built on joint-Texas experimental tokamak.The probe consists of 8 graph...In order to measure boundary electrostatic and magnetic fluctuations simultaneously,a combined Langmuir-magnetic probe(CLMP)has been designed and built on joint-Texas experimental tokamak.The probe consists of 8 graphite probe pins and a 3D magnetic probe,driven by a mechanical pneumatic device.By means of simulation,the shielding effect of the graphite sleeve on the magnetic fluctuation signal is explored,and the influence of the eddy current was reduced by cutting the graphite sleeve.In the experiment,it has been verified that the mutual inductance of electromagnetic signals can be ignored,and a 70–90 k Hz electromagnetic mode is observed around the last closed magnetic surface.The establishment of CLMP provides data for the exploration of the coupling of electrostatic and magnetic fluctuations.展开更多
Two pairs of high-frequency magnetic probes were installed in the Large Helical Device (LHD). During the injection of a perpendicular neutral beam, ion cyclotron emissions (ICEs) with the fundamental frequency cor...Two pairs of high-frequency magnetic probes were installed in the Large Helical Device (LHD). During the injection of a perpendicular neutral beam, ion cyclotron emissions (ICEs) with the fundamental frequency corresponding to the ion cyclotron frequency at the plasma edge were detected, which are the same type of ICE as measured with the former spare ion cyclotron range of frequencies (ICRF) heating antennas. This type of ICE was further investigated with regard to the phase and intensity of signals. Another type of ICE was found in the LHD, and these ICEs were synchronized with bursts of toroidicity induced Alfv^n eigenmodes (TAE) and the rise of intensity of lost ion flux. Therefore the source of these ICEs was thought to be the particles transferred from the core to the outer region of plasma by the TAE bursts. The frequency of ICEs induced by the TAE bursts increases linearly with the magnetic field strength, since the ion cyclotron frequency increases with the magnetic field strength.展开更多
The plasma shape and other paremeters such as /3P, li is important for the tokamak deveice where the plasma has a non-circular cross-section of sufficient elongation. The measuered signals of magnetic probes and flux ...The plasma shape and other paremeters such as /3P, li is important for the tokamak deveice where the plasma has a non-circular cross-section of sufficient elongation. The measuered signals of magnetic probes and flux loops are used to reconstruct the plasma shape and the current profile in device operation and plasma shape feed back control system. So the number and positions of magnetic probes and flux loops provides the basis of the plasma reconstruction. This paper instroduce how to use EFIT code (equilibrium fitting code) to determine the number and positions of the magnetic probes and flux loops. The simulation result is given also.展开更多
It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present...It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.展开更多
The current sheath velocity in 0.25 Torr gas pressure of Filippov type plasma focus is studied experimentally. By using two tridimensional magnetic probes on top of the anode surface, the current sheath velocity is me...The current sheath velocity in 0.25 Torr gas pressure of Filippov type plasma focus is studied experimentally. By using two tridimensional magnetic probes on top of the anode surface, the current sheath velocity is measured for argon, oxygen and nitrogen. Additionally, the effect of charging voltage on the current sheath velocity is studied in both axial and radial phases. We found that, the maximum current sheath velocities at both radial and axial phases are respectively 4.33 ± 0.28 (cm/μs) and 3.92 ± 0.75 (cm/μs) with argon as the working gas at 17 kV. Also, the minimum values of current sheath velocity are 1.48 ± 0.15 (cm/μs) at the radial phase and 1.14 ± 0.09 (cm/μs) at the axial phase with oxygen at 12 kV. The current sheath velocity at the radial phase is higher than that at the axial phase for all gases and voltages. In this study, variation of the full width half maximum (FWHM) of magnetic probe signals with voltage is investigated for different gases at radial and axial phases.展开更多
A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and dat...A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and data acquisition system of the probe are comprehensively examined.The fluctuation data from the EXL-50 plasma are analyzed in the time–frequency domain using fast Fourier transforms.Moreover,distinct high-frequency instabilities are detected using this diagnostic system.In particular,significant frequency chirping is observed,which is consistent with the bumpon-tail drive instability predicted using the Berk–Breizman model.展开更多
Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This...Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This study designs and optimizes the magnetic diagnostics layout for the reconstruction of the equilibrium of the plasma according to the scientific objectives,engineering design parameters,and limitations of the Chinese Fusion Engineering Test Reactor(CFETR).Based on the CFETR discharge simulation,magnetic measurement data are employed to reconstruct consistent plasma equilibrium parameters,and magnetic diagnostics'number and position are optimized by truncated Singular value decomposition,verifying the redundancy reliability of the magnetic diagnostics layout design.This provides a design solution for the layout of the magnetic diagnostics system required to control the plasma equilibrium of CFETR,and the developed design and optimization method can provide effective support to design magnetic diagnostics systems for future magnetic confinement fusion devices.展开更多
A magnetic measurement system consisting of magnetic probes and flux loops for spherical tokamak SUNIST, is uniquely designed due to the strongly shaped plasma cross section and the narrow space near the central solen...A magnetic measurement system consisting of magnetic probes and flux loops for spherical tokamak SUNIST, is uniquely designed due to the strongly shaped plasma cross section and the narrow space near the central solenoid. Plasma equilibrium reconstruction with the current filament method is performed to determine the number and positions of the magnetic probes and flux loops, as well as their design precision required.展开更多
Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermo...Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived(~300 μs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and lowinductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil,magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament’s azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and Ⅰ–Ⅴ characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of plasma flow via oscillograms of electron and ion beam currents.展开更多
Experiments on specimens of mild steel and cast iron have beenperformed under vari- ous loading conditions. A modified formula isput forward to analyze the cruciform specimen which is often used inmagnetic methods for...Experiments on specimens of mild steel and cast iron have beenperformed under vari- ous loading conditions. A modified formula isput forward to analyze the cruciform specimen which is often used inmagnetic methods for calibration. We assume that the relationshipbetween the magnetic output and strain is linear and a newfour-coefficient method is deduced. Finally, the results of practi-cal applications are given.展开更多
Focusing on the stack performance is important for practical use of PEM (proton exchange membrane) fuel cells. This paper describes the experiments and evaluation on the performance of 1-kW class PEM FC (fuel cell...Focusing on the stack performance is important for practical use of PEM (proton exchange membrane) fuel cells. This paper describes the experiments and evaluation on the performance of 1-kW class PEM FC (fuel cell) stacks for reliability improvement. We investigated the stack performance, voltage distributions, and internal resistance of the single cells of a PEMFC stack. The standard deviation of individual cell voltages increased almost linearly with the current load by 2.5 times that in the case of an open-circuit voltage, with a standard deviation of 33 A. From the results of the current-interrupt tests, the internal resistance of the FC stack was calculated to be 43.53 mΩ. The internal resistances of each individual cell were not uniform. The average internal resistance was 0.505 mΩ at 18 A, which was less than that calculated from the stack current-interrupt test. We also investigated the current distribution in the PEM FC stack under in-situ conditions using a triaxial magnetic sensor probe. From the results, the current distribution tended to concentrate on the underside of the cell. Each I-V curve at the divided plane can be obtained using the developed method.展开更多
基金supported by the National Key R&D Program of China(No.2018YFE0309100)National Natural Science Foundation of China(No.51821005)。
文摘In order to measure boundary electrostatic and magnetic fluctuations simultaneously,a combined Langmuir-magnetic probe(CLMP)has been designed and built on joint-Texas experimental tokamak.The probe consists of 8 graphite probe pins and a 3D magnetic probe,driven by a mechanical pneumatic device.By means of simulation,the shielding effect of the graphite sleeve on the magnetic fluctuation signal is explored,and the influence of the eddy current was reduced by cutting the graphite sleeve.In the experiment,it has been verified that the mutual inductance of electromagnetic signals can be ignored,and a 70–90 k Hz electromagnetic mode is observed around the last closed magnetic surface.The establishment of CLMP provides data for the exploration of the coupling of electrostatic and magnetic fluctuations.
基金supported by NIFS budgets NIFS10ULRR003,NIFS11ULRR703,and NIFS11PLRR302
文摘Two pairs of high-frequency magnetic probes were installed in the Large Helical Device (LHD). During the injection of a perpendicular neutral beam, ion cyclotron emissions (ICEs) with the fundamental frequency corresponding to the ion cyclotron frequency at the plasma edge were detected, which are the same type of ICE as measured with the former spare ion cyclotron range of frequencies (ICRF) heating antennas. This type of ICE was further investigated with regard to the phase and intensity of signals. Another type of ICE was found in the LHD, and these ICEs were synchronized with bursts of toroidicity induced Alfv^n eigenmodes (TAE) and the rise of intensity of lost ion flux. Therefore the source of these ICEs was thought to be the particles transferred from the core to the outer region of plasma by the TAE bursts. The frequency of ICEs induced by the TAE bursts increases linearly with the magnetic field strength, since the ion cyclotron frequency increases with the magnetic field strength.
基金The project supported by the National Meg-Science Engineering Project of the Chinese Government
文摘The plasma shape and other paremeters such as /3P, li is important for the tokamak deveice where the plasma has a non-circular cross-section of sufficient elongation. The measuered signals of magnetic probes and flux loops are used to reconstruct the plasma shape and the current profile in device operation and plasma shape feed back control system. So the number and positions of magnetic probes and flux loops provides the basis of the plasma reconstruction. This paper instroduce how to use EFIT code (equilibrium fitting code) to determine the number and positions of the magnetic probes and flux loops. The simulation result is given also.
基金financially supported by National Natural Science Foundation of China(NSFC)(Nos.12005035 and 11935005)China Postdoctoral Science Foundation(Nos.2020M670741 and 2021T140085)+2 种基金Fundamental Research Funds for the Central Universities(No.DUT20LAB201)National Science Foundation(No.PHY-1500518)Department of Energy Office of Fusion Energy Science(No.DE-SC0001939)for financial support。
文摘It is recognized that standing wave effects appearing in large-area,very-high-frequency capacitively coupled plasma(CCP)reactors cause center-high plasma non-uniformity.Using a high-frequency magnetic probe,we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56,30,and 60 MHz.The design,principle,calibration,and validation of the probe are described in detail.Spatial structures of the harmonics of the magnetic field,determined by the magnetic probe,were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition,providing insights into the behavior of nonlinear harmonics.At a low driving frequency,i.e.13.56 MHz,no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible.The harmonic magnetic field/current was found to increase dramatically with the driving frequency,due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency,leading to the enhancements of the ohmic heating and the plasma density in the bulk,specifically at the electrode center.At a high driving frequency,i.e.60 MHz,the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure,with the main peak on axis,and one or more minor peaks between the electrode center and the edge,contributing to the center-high profile of the plasma density.
文摘The current sheath velocity in 0.25 Torr gas pressure of Filippov type plasma focus is studied experimentally. By using two tridimensional magnetic probes on top of the anode surface, the current sheath velocity is measured for argon, oxygen and nitrogen. Additionally, the effect of charging voltage on the current sheath velocity is studied in both axial and radial phases. We found that, the maximum current sheath velocities at both radial and axial phases are respectively 4.33 ± 0.28 (cm/μs) and 3.92 ± 0.75 (cm/μs) with argon as the working gas at 17 kV. Also, the minimum values of current sheath velocity are 1.48 ± 0.15 (cm/μs) at the radial phase and 1.14 ± 0.09 (cm/μs) at the axial phase with oxygen at 12 kV. The current sheath velocity at the radial phase is higher than that at the axial phase for all gases and voltages. In this study, variation of the full width half maximum (FWHM) of magnetic probe signals with voltage is investigated for different gases at radial and axial phases.
基金supported by National Natural Science Foundation of China(No.11706151)。
文摘A high-frequency magnetic probe is designed and developed on the XuanL ong-50(EXL-50)spherical torus to measure high-frequency magnetic field fluctuation.The magnetic loop,radio filters,radio-frequency limiter,and data acquisition system of the probe are comprehensively examined.The fluctuation data from the EXL-50 plasma are analyzed in the time–frequency domain using fast Fourier transforms.Moreover,distinct high-frequency instabilities are detected using this diagnostic system.In particular,significant frequency chirping is observed,which is consistent with the bumpon-tail drive instability predicted using the Berk–Breizman model.
基金Project supported by the National MCF Energy Research and Development Program of China (Grant Nos.2022YFE03010002,2018YFE0302100,and 2018YFE0301105)the National Natural Science Foundation of China (Grant Nos.11875291,11805236,11905256,and 12075285)。
文摘Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This study designs and optimizes the magnetic diagnostics layout for the reconstruction of the equilibrium of the plasma according to the scientific objectives,engineering design parameters,and limitations of the Chinese Fusion Engineering Test Reactor(CFETR).Based on the CFETR discharge simulation,magnetic measurement data are employed to reconstruct consistent plasma equilibrium parameters,and magnetic diagnostics'number and position are optimized by truncated Singular value decomposition,verifying the redundancy reliability of the magnetic diagnostics layout design.This provides a design solution for the layout of the magnetic diagnostics system required to control the plasma equilibrium of CFETR,and the developed design and optimization method can provide effective support to design magnetic diagnostics systems for future magnetic confinement fusion devices.
基金National Science Foundation of China(No.10535020)the Foundation for the Authors of National Excellent Doctoral Dissertation of China(No.200456)
文摘A magnetic measurement system consisting of magnetic probes and flux loops for spherical tokamak SUNIST, is uniquely designed due to the strongly shaped plasma cross section and the narrow space near the central solenoid. Plasma equilibrium reconstruction with the current filament method is performed to determine the number and positions of the magnetic probes and flux loops, as well as their design precision required.
基金supported by the Ministry of Education and Science of the Republic of Kazakhstan(IRN AP08053373)。
文摘Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived(~300 μs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and lowinductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil,magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament’s azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and Ⅰ–Ⅴ characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of plasma flow via oscillograms of electron and ion beam currents.
文摘Experiments on specimens of mild steel and cast iron have beenperformed under vari- ous loading conditions. A modified formula isput forward to analyze the cruciform specimen which is often used inmagnetic methods for calibration. We assume that the relationshipbetween the magnetic output and strain is linear and a newfour-coefficient method is deduced. Finally, the results of practi-cal applications are given.
文摘Focusing on the stack performance is important for practical use of PEM (proton exchange membrane) fuel cells. This paper describes the experiments and evaluation on the performance of 1-kW class PEM FC (fuel cell) stacks for reliability improvement. We investigated the stack performance, voltage distributions, and internal resistance of the single cells of a PEMFC stack. The standard deviation of individual cell voltages increased almost linearly with the current load by 2.5 times that in the case of an open-circuit voltage, with a standard deviation of 33 A. From the results of the current-interrupt tests, the internal resistance of the FC stack was calculated to be 43.53 mΩ. The internal resistances of each individual cell were not uniform. The average internal resistance was 0.505 mΩ at 18 A, which was less than that calculated from the stack current-interrupt test. We also investigated the current distribution in the PEM FC stack under in-situ conditions using a triaxial magnetic sensor probe. From the results, the current distribution tended to concentrate on the underside of the cell. Each I-V curve at the divided plane can be obtained using the developed method.