Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission...Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.展开更多
Magnetic pulse compression(MPC)system has been widely-used for over a few decades as a technique for producing short-duration,high-peak-power pulses reliably.A novel MPC system which does not contain external demagnet...Magnetic pulse compression(MPC)system has been widely-used for over a few decades as a technique for producing short-duration,high-peak-power pulses reliably.A novel MPC system which does not contain external demagnetization circuits,has broadened the application of MPC systems.Improvements for novel MPC systems are presented.To meet the required voltage and compression gain and on considering of the overall system efficiency,two kinds of most popular MPC systems based on the improved MPC topology are designed,which are 2-stage MPC system and 3-stage MPC system,respectively.Based on the improved MPC topology,several kinds of compact pulse generators are built in pulsed power and supply technology laboratory of Institute of Electrical Engineering,Chinese Academy of Sciences.These generators illustrate that the improved MPC topology,together with solid state switches provides an ideal way to generate pulses of around 100 nano-seconds in width,with mid and high voltage of 10 kV to 100 kV,and a high repetition frequency of about 30 kHz.展开更多
基金supported by the High Technology Resesarch Development Project of China (863)
文摘Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.
基金Project supported by National Natural Science Foundation of China (50907068, 51222701 ), National Basic Research Program of China (973 Program) (2011 CB209402), Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University (EIPE12204).
文摘Magnetic pulse compression(MPC)system has been widely-used for over a few decades as a technique for producing short-duration,high-peak-power pulses reliably.A novel MPC system which does not contain external demagnetization circuits,has broadened the application of MPC systems.Improvements for novel MPC systems are presented.To meet the required voltage and compression gain and on considering of the overall system efficiency,two kinds of most popular MPC systems based on the improved MPC topology are designed,which are 2-stage MPC system and 3-stage MPC system,respectively.Based on the improved MPC topology,several kinds of compact pulse generators are built in pulsed power and supply technology laboratory of Institute of Electrical Engineering,Chinese Academy of Sciences.These generators illustrate that the improved MPC topology,together with solid state switches provides an ideal way to generate pulses of around 100 nano-seconds in width,with mid and high voltage of 10 kV to 100 kV,and a high repetition frequency of about 30 kHz.