In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 oC using barium chlorid...In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 oC using barium chloride (BaCl2), ferrous chloride (FeCl2) and potassium nitrate (KNO3) as the starting materials. Both particle size and saturation magnetization (Ms) increase with increasing hydrothermal reaction temperature, while the intrinsic coercivity (iHc) peaks at 685 Oe at 230 oC. Morphology progress from the barium ferrite precursor particles to the barium hexaferrite particles has been monitored with increasing hydrothermal reaction time at 230 oC in the autoclave.展开更多
文摘In the present work, fine barium ferrite powder has been synthesized through a one-step hydrothermal process in an autoclave at [OH-]/[Cl-] ratio of 2:1 in the temperature range from 180 to 260 oC using barium chloride (BaCl2), ferrous chloride (FeCl2) and potassium nitrate (KNO3) as the starting materials. Both particle size and saturation magnetization (Ms) increase with increasing hydrothermal reaction temperature, while the intrinsic coercivity (iHc) peaks at 685 Oe at 230 oC. Morphology progress from the barium ferrite precursor particles to the barium hexaferrite particles has been monitored with increasing hydrothermal reaction time at 230 oC in the autoclave.