Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is ...Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is crucial to the sustainable rare-earth industry.However,the current multistage wet process recycling technique for the sludge wastes involves high fabrication cost,excessive energy consumption,and heavy environmental burden.Therefore,short-process recycling techniques for Nd-Fe-B sintered magnet wastes have drawn increasing attention in the past decades.In this paper,we review recent efforts into short-process recycling Nd-Fe-B sintered magnet sludge wastes with emphasis on in-situ recycling techniques.展开更多
The effect of mid-stage pulping wastewater(as shock load)on micro-aerobic magnetic activated sludge system was studied.Micro-aerobic activated sludge systems with and without magnetic particles were shocked with mid-s...The effect of mid-stage pulping wastewater(as shock load)on micro-aerobic magnetic activated sludge system was studied.Micro-aerobic activated sludge systems with and without magnetic particles were shocked with mid-stage wastewater for 16 days.“Recovery”experiments were conducted by using simulated wastewater for 12 days.Upon the addition of mid-stage wastewater,CODCr removal pertaining to the use of magnetic particles reached 71.57%and remained above 80%in the“recovery”experiment.However,the efficiency of the reactor in the absence of magnetic particles was only 37.29%,and reached about 40%in the“recovery”experiment.After the micro-aerobic activated sludge was shocked,the flocculation performance and surface properties of the sludge were analyzed,and the results showed that all indicators of the reactors in the presence of magnetic particles were superior to those of reactors without magnetic particles.After 12 days of“recovery”,the indicators of the sludge pertaining to the reactors containing magnetic particles“recovered”completely.展开更多
Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In presen...Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route.展开更多
In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-...In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively.展开更多
基金the National Key R&D Project(2021YFB3500800,2020YFC1909004)Science and Technology Program ofAnhui Province(201903a07020002)+1 种基金Program of Top DisciplinesConstruction in Beijing(PXM2019_014204_500031)State Key Laboratoryof Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM17OF02)。
文摘Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is crucial to the sustainable rare-earth industry.However,the current multistage wet process recycling technique for the sludge wastes involves high fabrication cost,excessive energy consumption,and heavy environmental burden.Therefore,short-process recycling techniques for Nd-Fe-B sintered magnet wastes have drawn increasing attention in the past decades.In this paper,we review recent efforts into short-process recycling Nd-Fe-B sintered magnet sludge wastes with emphasis on in-situ recycling techniques.
基金the State Key Laboratory of Pulp and Paper Engineering(201522)Shandong Provincial Natural Science Foundation of China(ZR2017MC032)the Natural Science Project of Guangdong Education Department(2015KTSCX140).
文摘The effect of mid-stage pulping wastewater(as shock load)on micro-aerobic magnetic activated sludge system was studied.Micro-aerobic activated sludge systems with and without magnetic particles were shocked with mid-stage wastewater for 16 days.“Recovery”experiments were conducted by using simulated wastewater for 12 days.Upon the addition of mid-stage wastewater,CODCr removal pertaining to the use of magnetic particles reached 71.57%and remained above 80%in the“recovery”experiment.However,the efficiency of the reactor in the absence of magnetic particles was only 37.29%,and reached about 40%in the“recovery”experiment.After the micro-aerobic activated sludge was shocked,the flocculation performance and surface properties of the sludge were analyzed,and the results showed that all indicators of the reactors in the presence of magnetic particles were superior to those of reactors without magnetic particles.After 12 days of“recovery”,the indicators of the sludge pertaining to the reactors containing magnetic particles“recovered”completely.
基金Project supported by the Beijing Municipal Natural Science Foundation(2172012)the International S&T Cooperation Program of China(2015DFG52020)the National High Technology Research and Development Program of China(2012AA063201)
文摘Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route.
基金Project supported by the National Key R&D Program of China (2021YFB3500801)the National Natural Science Foundation of China(52271161)+5 种基金the Science and Technology Program of Anhui Province(201903a07020002)General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202010005009)"QiHang Programme"for Faculty of Materials and Manufacturing,BJUT (QH202211)Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031)Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources of the People’s Republic of China (2022IRERE302)the State Key Laboratory of Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM170F02)。
文摘In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively.