The frequency of based on the load pattern the power system varies of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Furth...The frequency of based on the load pattern the power system varies of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Further increase in the load will result in more frequency drop leading to the need of load shedding, if excess generation is not available to cater the need. This paper proposed a methodology in a hybrid thermal-hydro system for finding the required amount of load to be shed for setting the frequency of the system within its minimum allowable limits. The load shedding steps were obtained based on the rate of change of frequency with the increase in the load in both areas. The impact of superconducting magnetic energy storage (SMES) was obtained on load shedding scheme. The comparison of the results was presented on the two-area system.展开更多
The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the syst...The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.展开更多
文摘The frequency of based on the load pattern the power system varies of the consumers. With continuous increase in the load, the frequency of the system keeps decreasing and may reach its minimum allowable limits. Further increase in the load will result in more frequency drop leading to the need of load shedding, if excess generation is not available to cater the need. This paper proposed a methodology in a hybrid thermal-hydro system for finding the required amount of load to be shed for setting the frequency of the system within its minimum allowable limits. The load shedding steps were obtained based on the rate of change of frequency with the increase in the load in both areas. The impact of superconducting magnetic energy storage (SMES) was obtained on load shedding scheme. The comparison of the results was presented on the two-area system.
文摘The power system is prone to many emergency conditions which may lead to emergency state of operation with decay in the system frequency. The dramatic change in the frequency can result in cascaded failure of the system. In order to avoid power system collapse, load shedding (LS) schemes are adopted with the optimal amount of load shed. This paper proposed a methodology in a two-area thermal-thermal system for finding the required amount of load to be shed for setting the frequency of the system within minimum allowable limits. The LS steps have been obtained based on the rate of change of frequency with the increase in load in steps. A systematic study has been conducted for three scenarios: the scheme with a conventional integral controller; the scheme with a linear quadratic regulator (LQR); and the scheme with an LQR and superconducting magnetic energy storage devices (SMES). A comparison of the results has been presented on the two-area system.