Polyvinylpyrrolidone (PVP) nanofibers were processed by magnetic-field-assisted electrospinning (MFAES) technique. Since electric field intensity was one of the most important parameters influencing fiber morpholo...Polyvinylpyrrolidone (PVP) nanofibers were processed by magnetic-field-assisted electrospinning (MFAES) technique. Since electric field intensity was one of the most important parameters influencing fiber morphology, the research aimed to study how electric field intensity affects fiber morphology in MFAES technique. The experimental results revealed that the distribution of diameter widened while the average diameter of PVP fibers decreased and the degree of the alignment reduced with the increase of electric field intensity. However, the fibers would be conglutinated together when the electric field intensity was too low. Also, the increase of working distance made the average diameter and the degree of the alignment increase slightly under the same electric field intensity, but the fibers could be partially curved instead of being fully straight if the working distance was too long. It was also indicated that maintaining the electric field intensity at 1 kV/cm With the voltage-distance combinations of 12 kV-12 cm (for 12wt% PVP) and 15 kV-15 cm (for 14wt% PVP) among all other combinations would result in the optimal alignment as well as a narrow size distribution of the fibers.展开更多
In this paper,1-butyl-3-methylimidazole tetrafluoroborate([BMIM]BF4)is used as corrosion inhibitor.Polyacrylonitrile(PAN)is used to load the corrosion inhibitor.PAN/[BMIM]BF4 hybrid nanofibers are successfullysynthesi...In this paper,1-butyl-3-methylimidazole tetrafluoroborate([BMIM]BF4)is used as corrosion inhibitor.Polyacrylonitrile(PAN)is used to load the corrosion inhibitor.PAN/[BMIM]BF4 hybrid nanofibers are successfullysynthesized by electrospinning technology.The alkyd varnish is coated on the fiber membrane to prepare a compositecoating,and then a series of tests are carried out on the self-healing and anticorrosive performance of the compositecoating.It is observed by scanning electron microscope that the fiber morphology is stable and there is no bead-likestructure.The composition of the composite fiber is analyzed by Fourier infrared spectroscopy,and it is confirmed thatthe hybrid nanofiber was successfully prepared.3D laser confocal scanning microscope was used to observe thecorrosion morphology and profile of the carbon steel.The composite coating shows good self-healing performance.[BMIM]BF4 can form a protective film on the surface of the bare carbon steel substrate through physical adsorption orchemical adsorption in an alkaline environment.Electrochemical impedance spectroscopy was tested and analyzed.It isfound that the maximum corrosion inhibition efficiency of the coating is 88.5%in 3.5 wt.%alkaline NaCl solution.Compared with the blank coating without nanofibers,the composite fiber varnish composite coating exhibits good selfhealingand anti-corrosion properties.展开更多
Flexible wearable batteries are widely used in smartwatches, foldable phones, and fitness trackers due to their thinness and small size. Zinc-based batteries have the advantages of low cost, high safety, and ecofriend...Flexible wearable batteries are widely used in smartwatches, foldable phones, and fitness trackers due to their thinness and small size. Zinc-based batteries have the advantages of low cost, high safety, and ecofriendliness, which are considered to be the best alternative to flexible lithium-ion batteries(LIBs).Therefore, wearable flexible zinc-ion batteries(FZIBs) have attracted considerable interest as a promising energy storage device. Electrospun nanofibers(ESNFs) have great potential for application in wearable FZIBs due to their low density, high porosity, large specific surface area, and flexibility. Moreover, electrospinning technology can achieve the versatility of nanofibers through structural design and incorporation of other multifunctional materials. This paper reviews a wide range of applications of electrospinning in FZIBs, mainly in terms of cathode, anode, separator, polymer electrolyte, and all-inone flexible batteries. Firstly, the electrospinning device, principles, and influencing parameters are briefly described, showing its positive impact on FZIBs. Subsequently, the energy storage principles and electrode configurations of FZIBs are described, and some of the common problems of the batteries are illustrated, including zinc anode dendrite growth, corrosion, cathode structure collapse, and poor electrical conductivity. This is followed by a comprehensive overview of research progress on the individual components of FZIBs(cathode, anode, separator, and polymer electrolyte) from the perspective of electrostatically spun fiber materials and an in-depth study of all-in-one flexible batteries. Finally, the challenges and future development of FZIBs are individually concluded and look forward. We hope that this work will provide new ideas and avenues for the development of advanced energy technologies and smart wearable systems.展开更多
In recent years,nanogenerators(NGs)have attracted wide attention in the energy field,among which triboelectric nanogenerators(TENGs)have shown superior performance.Multiple reports of electrospinning(ES)-based TENGs h...In recent years,nanogenerators(NGs)have attracted wide attention in the energy field,among which triboelectric nanogenerators(TENGs)have shown superior performance.Multiple reports of electrospinning(ES)-based TENGs have been reported,but there is a lack of deep analysis of the designing method from microstructure,limiting the creative of new ES-based TENGs.Most TENGs use polymer materials to achieve corresponding design,which requires structural design of polymer materials.The existing polymer molding design methods include macroscopic molding methods,such as injection,compression,extrusion,calendering,etc.,combined with liquid-solid changes such as soluting and melting;it also includes micro-nano molding technology,such as melt-blown method,coagulation bath method,ES method,and nanoimprint method.In fact,ES technology has good controllability of thickness dimension and rich means of nanoscale structure regulation.At present,these characteristics have not been reviewed.Therefore,in this paper,we combine recent reports with some microstructure regulation functions of ES to establish a more general TENGs design method.Based on the rich microstructure research results in the field of ES,much more new types of TENGs can be designed in the future.展开更多
The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nev...The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nevertheless,due to its displacement and poor mechanical support,bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects.The combination of GTR/GBR membrane with a three-dimensional(3D)porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects.In this study,a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid)(PLGA)/fish collagen(FC)electrospun membrane(PFC)to a 3D-printed PLGA/nano-hydroxyapatite(HA)(PHA)scaffold.The consistency of the composition(PLGA)ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold.In vitro cell experiments showed that the PFC membrane(upper layer)effectively prevented the unwanted migration of L929 cells.Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues.These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues.展开更多
A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method whi...A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method which combines 3D bio-printing and electrospinning to prepare the composite bioabsorbable vascular stent (CBVS) is proposed. The inner layer of the CBVS can be obtained through 3D bio- printing using poly-p-dioxanone (PPDO). The thin nanofiber film that serves as the outer layer can be built through electrospinning using mixtures of chitosan-PVA (poly (vinyl alcohol)). Tests of mechanical properties show that the stent prepared through 3D bio-printing combined with electrospinning is better than that prepared through 3D bio- printing alone. Cells cultivated on the CBVS adhere and proliferate better due to the natural, biological chitosan in the outer layer. The proposed complex process and method can provide a good basis for preparing a controllable drug-carrying vascular stent. Overall, the CBVS can be a good candidate for treating stenotic vessels.展开更多
Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ...Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.展开更多
Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were character...Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG-DTA), and (FTIR). SEM micrographs indicated that the surface of the composite fibers was smooth and became coarse with the increase of calcination temperatures. The diameters of CeO2 hollow nanofibers (300 nm at 600 ℃ and 600 nm at 800 ℃ ) were smaller than those of PVP/Ce(NO3)3 composite fibers (1-2 um ). CeO2 hollow nanofibers were obtained at 600 ℃ and CeO2 hollow and porous nanofibers formed by nanoparti- cles were obtained at 800 ℃. The length of the CeO2 hollow nanofibers was greater than 50 um. XRD analysis revealed that the composite microfibers were amorphous in structure and CeO2 nanofibers were cubic in structure with space group O^5H - FM3m when calcination tem- peratures were 600-800 ℃. TG-DTA and FTIR revealed that the formation of CeO2 nanofibers was largely influenced by the calcination temperatures. Possible formation mechanism of CeO2 hollow nanofibers was proposed.展开更多
Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mi...Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl p...Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm 900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.展开更多
Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan ...Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased.展开更多
Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly attractive...Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly attractive to various nanotechnological applications such as filtration membranes, protective clothing, drug delivery, tissue-engineering, biosensors, catalysis, fuel cells and so on. In this review, we collectively summarized the recent progress in developments of the electrospun ultrafine polyamide-6 based nanofibers preparation,characterization and their applications. Information of this polyamide-6 and composites together with their processing conditions for electrospinning of ultrafine nanofibers has been summarized in this review. The recent developments made during last few years on these materials are addressed in this review. We are anticipating that this review certainly drive the researchers for developing more intensive investigation for exploring in many technological areas.展开更多
The paper was aimed at the PMMA/HNTs composite nanofibers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the st...The paper was aimed at the PMMA/HNTs composite nanofibers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the structure and properties of the composite nanofibers by SEM, XRD, FTIR and DSC techniques. The effect of the PMMA/HNTs composite nanofibers in relationship to the mass percentage of HNTs was investigated. The results indicated that HNTs wrapped in polymer matrix were highly oriented and dispersed by the electrospinning technique, resulting in improved thermal stability of the polymer. Moreover, the mechanical properties of the PMMA/HNTs composite nanofibers which were dependent on HNTs mass content were measured, and good enhanced mechanical properties were obtained.展开更多
The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative...The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative electrospinning strategy that adopts a symmetrically divergent electric field to induce rapid self-assembly of aligned polycaprolactone(PCL) nanofibers into a centimeter-scale architecture between separately grounded bevels. The 3D microstructures of the nanofiber scaffolds were characterized through a series of sectioning in both vertical and horizontal directions. PCL/collagen(type I)nanofiber scaffolds with different density gradients were incorporated in sodium alginate hydrogels and subjected to elemental analysis. Human fibroblasts were seeded onto the scaffolds and cultured for 7 days. Our studies showed that the inclination angle of the collector had significant effects on nanofiber attributes, including the mean diameter, density gradient, and alignment gradient. The fiber density and alignment at the peripheral area of the 45°-collector decreased by 21% and 55%, respectively, along the z-axis,while those of the 60°-collector decreased by 71% and 60%, respectively. By altering the geometry of the conductive areas on the collecting bevels, polyhedral and cylindrical scaffolds composed of aligned fibers were directly fabricated. By using a four-bevel collector, the nanofibers formed a matrix of microgrids with a density of 11%. The gradient of nitrogen-to-carbon ratio in the scaffold-incorporated hydrogel was consistent with the nanofiber density gradient. The scaffolds provided biophysical stimuli to facilitate cell adhesion, proliferation, and morphogenesis in 3D.展开更多
Polyacrylonitrile(PAN)/Fe3O4 composite nanofibers were successfully obtained through electrospinning and sol-gel technology. The resulting magnetic Fe3O4 nanoparticles were homogeneously distributed on the surface o...Polyacrylonitrile(PAN)/Fe3O4 composite nanofibers were successfully obtained through electrospinning and sol-gel technology. The resulting magnetic Fe3O4 nanoparticles were homogeneously distributed on the surface of PAN nanofibers and the diameters of polyacrylonitrile nanofibers and nanoparticles were easily controlled, respectively. The distribution of Fe3O4 nanoparticles inside the nanofibrous composite was investigated by field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction reveals the presence of Fe3O4 nanoparticles in the composite nanofiber. The resulting sample shows a super paramagnetic behavior.展开更多
A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without...A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without the use of a surfactant. The effects of solution properties on the electrospinning of PEO, PAM and PVP solutions were investigated. The viscosity of the solution, charge density carried by the jet, and the surface tension of the solution are the key factors that influence the morphology and diameter size of the fibers. The viscosity of the solution was measured on a modular compact rheometer. The morphology and the diameter size distribution of the fibers were observed under an environmental scanning electron microscope(ESEM). The results show that the diameters of the nanofibers electro spun from the solutions of these water soluble polymers were uniform and less than 300 nm.展开更多
Sulfonated poly(ether ether ketone kctone)(SPEEKK) membranes with different degrees of sulfonation(DS) were successfully prepared via electrospinning method. The morphology of the resulted membranes varies from ...Sulfonated poly(ether ether ketone kctone)(SPEEKK) membranes with different degrees of sulfonation(DS) were successfully prepared via electrospinning method. The morphology of the resulted membranes varies from nanospheres to nanofibers with increasing the concentration of SPEEKK. The conductivities of the membranes prepared under the same condition increase with the DS increasing. The spherical morphological membranes with a DS of 1.2 show the highest proton conductivity, 0.55 S/cm, which is much higher than those of the membranes prepared via normal solution evaporation method. The results show that electrospinning is an efficient method to prepare high performance SPEEKK membranes with different morphologies.展开更多
We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of po...We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of polyamide-6/TiO2 composite nanofibers was investigated. The resultant nanofibers exhibit good incorporation of TiO2 nanoparticles. The doping of TiO2 nanoparticles into the polyamide-6 nanofibers were confirmed by high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Photoluminescence(PL) and cathodoluminescence(CL) spectroscopy were also used to characterize the samples.The PL and CL spectra reveal that the as-spun polyamide-6/TiO2 composite nanofibers consisted of overlapping of two broad emission bands due to the contribution of polyamide-6(centered at about 475 nm), which might originate from organic functional groups of polyamide-6 and TiO2 nanoparticles(centered around 550 nm). The electrical conductivity of the polyamide-6/TiO2 composite nanofibers on different substrates was carried out.It was found that the electrical conductivity of the polyamide-6/TiO2 composite nanofibers on silicon substrate was in the range of 13 μA, and about 1 to 20 p A for the paper and glass substrates.展开更多
Mesoporous TiO2 nanofibers have been synthesized by a new method that combines sol-gel chemistry and electrospinning technique.The obtained mesoporous TiO2 nanofibers were characterized with scanning electron microsc...Mesoporous TiO2 nanofibers have been synthesized by a new method that combines sol-gel chemistry and electrospinning technique.The obtained mesoporous TiO2 nanofibers were characterized with scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM) and nitrogen adsorptiondesorption isotherms.The photocatalytic performance was evaluated by the photocatalytic degradation of Rhodamine B under UV light irradiation.The results show that mesoporous TiO2 nanofibers exhibit higher photocatalytic activity compared with nonporous TiO2 nanofibers.展开更多
Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-lik...Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-like meshes. The in vitro release experiments reveal that the drug release speed and initial burst release were controllable by adjusting the thicknesses of electrospun barrier mesh and drug-loaded mesh. Compared with those of other drug delivery systems, the main advantages of the sandwich structure-like fiber meshes are facile preparation conditions and the generality for hydrophobic and hydrophilic pharmaceuticals.展开更多
基金Fund by the Youth Foundation of the North University of China(2012)the Project of Graduate Innovation of Shanxi Province(20133102)
文摘Polyvinylpyrrolidone (PVP) nanofibers were processed by magnetic-field-assisted electrospinning (MFAES) technique. Since electric field intensity was one of the most important parameters influencing fiber morphology, the research aimed to study how electric field intensity affects fiber morphology in MFAES technique. The experimental results revealed that the distribution of diameter widened while the average diameter of PVP fibers decreased and the degree of the alignment reduced with the increase of electric field intensity. However, the fibers would be conglutinated together when the electric field intensity was too low. Also, the increase of working distance made the average diameter and the degree of the alignment increase slightly under the same electric field intensity, but the fibers could be partially curved instead of being fully straight if the working distance was too long. It was also indicated that maintaining the electric field intensity at 1 kV/cm With the voltage-distance combinations of 12 kV-12 cm (for 12wt% PVP) and 15 kV-15 cm (for 14wt% PVP) among all other combinations would result in the optimal alignment as well as a narrow size distribution of the fibers.
基金Projects(42076039,42106042)supported by the National Natural Science Foundation of ChinaProject(202165004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(JC12022106)supported by 2022 Innovation Project for Young Scientific and Technological Talents in Basic Science Research,China。
文摘In this paper,1-butyl-3-methylimidazole tetrafluoroborate([BMIM]BF4)is used as corrosion inhibitor.Polyacrylonitrile(PAN)is used to load the corrosion inhibitor.PAN/[BMIM]BF4 hybrid nanofibers are successfullysynthesized by electrospinning technology.The alkyd varnish is coated on the fiber membrane to prepare a compositecoating,and then a series of tests are carried out on the self-healing and anticorrosive performance of the compositecoating.It is observed by scanning electron microscope that the fiber morphology is stable and there is no bead-likestructure.The composition of the composite fiber is analyzed by Fourier infrared spectroscopy,and it is confirmed thatthe hybrid nanofiber was successfully prepared.3D laser confocal scanning microscope was used to observe thecorrosion morphology and profile of the carbon steel.The composite coating shows good self-healing performance.[BMIM]BF4 can form a protective film on the surface of the bare carbon steel substrate through physical adsorption orchemical adsorption in an alkaline environment.Electrochemical impedance spectroscopy was tested and analyzed.It isfound that the maximum corrosion inhibition efficiency of the coating is 88.5%in 3.5 wt.%alkaline NaCl solution.Compared with the blank coating without nanofibers,the composite fiber varnish composite coating exhibits good selfhealingand anti-corrosion properties.
基金National Natural Science Foundation of China (52103061)Young Elite Scientist Sponsorship Program by China Association for Science and Technology (YESS20220298)+2 种基金Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00400)China Postdoctoral Science Foundation (2021T140419, 2022M711959)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘Flexible wearable batteries are widely used in smartwatches, foldable phones, and fitness trackers due to their thinness and small size. Zinc-based batteries have the advantages of low cost, high safety, and ecofriendliness, which are considered to be the best alternative to flexible lithium-ion batteries(LIBs).Therefore, wearable flexible zinc-ion batteries(FZIBs) have attracted considerable interest as a promising energy storage device. Electrospun nanofibers(ESNFs) have great potential for application in wearable FZIBs due to their low density, high porosity, large specific surface area, and flexibility. Moreover, electrospinning technology can achieve the versatility of nanofibers through structural design and incorporation of other multifunctional materials. This paper reviews a wide range of applications of electrospinning in FZIBs, mainly in terms of cathode, anode, separator, polymer electrolyte, and all-inone flexible batteries. Firstly, the electrospinning device, principles, and influencing parameters are briefly described, showing its positive impact on FZIBs. Subsequently, the energy storage principles and electrode configurations of FZIBs are described, and some of the common problems of the batteries are illustrated, including zinc anode dendrite growth, corrosion, cathode structure collapse, and poor electrical conductivity. This is followed by a comprehensive overview of research progress on the individual components of FZIBs(cathode, anode, separator, and polymer electrolyte) from the perspective of electrostatically spun fiber materials and an in-depth study of all-in-one flexible batteries. Finally, the challenges and future development of FZIBs are individually concluded and look forward. We hope that this work will provide new ideas and avenues for the development of advanced energy technologies and smart wearable systems.
基金supported by the National Natural Science Foundation of China(12104249,11804313 and 11847135)the Youth Innovation Team Project of Shandong Provincial Education Department(2021KJ013,2020KJN015)by State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(GZRC202011&ZKT46)。
文摘In recent years,nanogenerators(NGs)have attracted wide attention in the energy field,among which triboelectric nanogenerators(TENGs)have shown superior performance.Multiple reports of electrospinning(ES)-based TENGs have been reported,but there is a lack of deep analysis of the designing method from microstructure,limiting the creative of new ES-based TENGs.Most TENGs use polymer materials to achieve corresponding design,which requires structural design of polymer materials.The existing polymer molding design methods include macroscopic molding methods,such as injection,compression,extrusion,calendering,etc.,combined with liquid-solid changes such as soluting and melting;it also includes micro-nano molding technology,such as melt-blown method,coagulation bath method,ES method,and nanoimprint method.In fact,ES technology has good controllability of thickness dimension and rich means of nanoscale structure regulation.At present,these characteristics have not been reviewed.Therefore,in this paper,we combine recent reports with some microstructure regulation functions of ES to establish a more general TENGs design method.Based on the rich microstructure research results in the field of ES,much more new types of TENGs can be designed in the future.
基金supported by the National Natural Science Foundation of China(No.32371398)the Sichuan International Science and Technology Innovation Cooperation Project,China(No.2023YFH0064)+1 种基金the National Key Research and Development Program of China(No.2016YFA0201700)the Fundamental Research Funds for the Central Universities,China。
文摘The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nevertheless,due to its displacement and poor mechanical support,bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects.The combination of GTR/GBR membrane with a three-dimensional(3D)porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects.In this study,a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid)(PLGA)/fish collagen(FC)electrospun membrane(PFC)to a 3D-printed PLGA/nano-hydroxyapatite(HA)(PHA)scaffold.The consistency of the composition(PLGA)ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold.In vitro cell experiments showed that the PFC membrane(upper layer)effectively prevented the unwanted migration of L929 cells.Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues.These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues.
基金The National Natural Science Foundation of China(No.51475281,51375292)the National Natural Science Foundation for Young Scholar of China(No.51105239)
文摘A new type of vascular stent is designed for treating stenotic vessels. Aiming at overcoming the shortcomings of existing equipment and technology for preparing a bioabsorbable vascular stent (BVS), a new method which combines 3D bio-printing and electrospinning to prepare the composite bioabsorbable vascular stent (CBVS) is proposed. The inner layer of the CBVS can be obtained through 3D bio- printing using poly-p-dioxanone (PPDO). The thin nanofiber film that serves as the outer layer can be built through electrospinning using mixtures of chitosan-PVA (poly (vinyl alcohol)). Tests of mechanical properties show that the stent prepared through 3D bio-printing combined with electrospinning is better than that prepared through 3D bio- printing alone. Cells cultivated on the CBVS adhere and proliferate better due to the natural, biological chitosan in the outer layer. The proposed complex process and method can provide a good basis for preparing a controllable drug-carrying vascular stent. Overall, the CBVS can be a good candidate for treating stenotic vessels.
基金supported by the National Natural Science Foundation of China(2137312021471022)+5 种基金the Development of Science and Technology Plan of Jilin ProvinceChina(2010154920130102001JC)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT13022)of Chinathe Program of Jilin Provincial Education Department(20131302013146)~~
文摘Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.
基金the Science and Technology Development Planning Project of Jilin Province (20040125, 20060504, 20070402)the Scien-tific Research Planning Project of the Education Department of Jilin Province (2005109, 2006YJT05)the Scientific Research Project of En-vironment Protection Bureau of Jilin Province(2006-24)
文摘Electrospinning technique was used to fabricate PVP/Ce(NO3)3 composite microfibers. Different morphological CeO2 nanofibers were obtained by calcination of the PVP/Ce(NO3)3 composite microfibers and were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetric and differential thermal analysis (TG-DTA), and (FTIR). SEM micrographs indicated that the surface of the composite fibers was smooth and became coarse with the increase of calcination temperatures. The diameters of CeO2 hollow nanofibers (300 nm at 600 ℃ and 600 nm at 800 ℃ ) were smaller than those of PVP/Ce(NO3)3 composite fibers (1-2 um ). CeO2 hollow nanofibers were obtained at 600 ℃ and CeO2 hollow and porous nanofibers formed by nanoparti- cles were obtained at 800 ℃. The length of the CeO2 hollow nanofibers was greater than 50 um. XRD analysis revealed that the composite microfibers were amorphous in structure and CeO2 nanofibers were cubic in structure with space group O^5H - FM3m when calcination tem- peratures were 600-800 ℃. TG-DTA and FTIR revealed that the formation of CeO2 nanofibers was largely influenced by the calcination temperatures. Possible formation mechanism of CeO2 hollow nanofibers was proposed.
基金supported by the National Natural Science Foundation of China(51203071,51363014 and 51362018)China Postdoctoral Science Foundation(2014M552509)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(sklpme2014-4-25)the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology(J201402)the University Scientific Research Project of Gansu Province(2014B-025)
文摘Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074138, 11004114, and 50973098)the Natural Science Foundation of Shandong Province for Distinguished Young Scholars (Grant No. JQ201103)the National Key Basic Research Development Program of China (Grant No. 2012CB722705)
文摘Elcctrospiiming is a straightforward method to produce micro/nanoscale fibers from polymer solutions typically using an operating voltage of 10 kV 30 kV and spinning distance of 10 cm 20 cm. In this paper, polyvinyl pyrrolidone (PVP) non-woven nanofibers with diameters of 200 nm 900 nm were prepared by low-voltage near-field electrospinning with a working voltage of less than 2.8 kV and a spinning distance of less than 10 mm. Besides the uniform fibers, beaded-fibers were also fabricated and the formation mechanism was discussed. Particularly, a series of experiments were carried out to explore the influence of processing variables on the formation of near-field electrospun PVP nanofibers, including concentration, humidity, collecting position, and spinning distance.
基金supported by the National Natural Science Foundation of China(Nos.50573011 and 50673019)
文摘Zein/chitosan composite fibrous membranes were fabricated from aqueous ethanol solutions by electrospinning. Poly(vinyl pyrrolidone) (PVP) was introduced to facilitate the electrospinning process of zein/chitosan composites. The asspun zein/chitosan/PVP composite fibrous membranes were characterized by scanning electron microscopy (SEM) and tensile tests. SEM images indicated that increasing zein and PVP concentrations led to an increase in average diameters of the composite fibers. In order to improve stability in wet stage and mechanical properties, the composite fibrous membranes were crosslinked by hexamethylene diisocyanate (HDI). The crosslinked composite fibrous membranes showed slight morphological change after immersion in water for 24 h. Mechanical tests revealed that tensile strength and elongation at break of the composite fibrous membranes were increased after crosslinking, whereas Young's modulus was decreased.
基金financially supported by the Ministry of Education, Science Technology (MEST) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation(2012H1B8A2025931)supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)(No.2012R1A2A2A01046086)
文摘Electrospinning is a highly versatile technique to prepare continuous fibers with diameters of the order of nanometers. The remarkable high aspect ratio and high porosity bring electrospun nanofibers highly attractive to various nanotechnological applications such as filtration membranes, protective clothing, drug delivery, tissue-engineering, biosensors, catalysis, fuel cells and so on. In this review, we collectively summarized the recent progress in developments of the electrospun ultrafine polyamide-6 based nanofibers preparation,characterization and their applications. Information of this polyamide-6 and composites together with their processing conditions for electrospinning of ultrafine nanofibers has been summarized in this review. The recent developments made during last few years on these materials are addressed in this review. We are anticipating that this review certainly drive the researchers for developing more intensive investigation for exploring in many technological areas.
基金supported by the Talent Introduction Fund of Yangzhou University(2012)the Key Research Project-Industry Foresight and General Key Technology of Yangzhou(YZ2015020)+3 种基金the Innovative Talent for the Green Yangzhou Golden Phoenix Program(yzlyjfjh2015CX073)the Jiangsu Province Science and Technology Support Project(BE2014613)the Six Talent Peaks of Jiangsu Province(2014-XCL-013)the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The paper was aimed at the PMMA/HNTs composite nanofibers with well enhanced mechanical properties prepared by electrospinning technique for the first time. A series of characterizations were used to illustrate the structure and properties of the composite nanofibers by SEM, XRD, FTIR and DSC techniques. The effect of the PMMA/HNTs composite nanofibers in relationship to the mass percentage of HNTs was investigated. The results indicated that HNTs wrapped in polymer matrix were highly oriented and dispersed by the electrospinning technique, resulting in improved thermal stability of the polymer. Moreover, the mechanical properties of the PMMA/HNTs composite nanofibers which were dependent on HNTs mass content were measured, and good enhanced mechanical properties were obtained.
基金financially supported by the Foundation of the Whitacre College of Engineering and the Office of Vice President for Research at Texas Tech University
文摘The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative electrospinning strategy that adopts a symmetrically divergent electric field to induce rapid self-assembly of aligned polycaprolactone(PCL) nanofibers into a centimeter-scale architecture between separately grounded bevels. The 3D microstructures of the nanofiber scaffolds were characterized through a series of sectioning in both vertical and horizontal directions. PCL/collagen(type I)nanofiber scaffolds with different density gradients were incorporated in sodium alginate hydrogels and subjected to elemental analysis. Human fibroblasts were seeded onto the scaffolds and cultured for 7 days. Our studies showed that the inclination angle of the collector had significant effects on nanofiber attributes, including the mean diameter, density gradient, and alignment gradient. The fiber density and alignment at the peripheral area of the 45°-collector decreased by 21% and 55%, respectively, along the z-axis,while those of the 60°-collector decreased by 71% and 60%, respectively. By altering the geometry of the conductive areas on the collecting bevels, polyhedral and cylindrical scaffolds composed of aligned fibers were directly fabricated. By using a four-bevel collector, the nanofibers formed a matrix of microgrids with a density of 11%. The gradient of nitrogen-to-carbon ratio in the scaffold-incorporated hydrogel was consistent with the nanofiber density gradient. The scaffolds provided biophysical stimuli to facilitate cell adhesion, proliferation, and morphogenesis in 3D.
基金Supported by the National High Tech Research and Development Programme of China(No.2007AA03Z324)National Basic Research Program of China(No. 228 2007CD936203)National Natural Science Foundation of China(Nos.20674027 and50873045)
文摘Polyacrylonitrile(PAN)/Fe3O4 composite nanofibers were successfully obtained through electrospinning and sol-gel technology. The resulting magnetic Fe3O4 nanoparticles were homogeneously distributed on the surface of PAN nanofibers and the diameters of polyacrylonitrile nanofibers and nanoparticles were easily controlled, respectively. The distribution of Fe3O4 nanoparticles inside the nanofibrous composite was investigated by field emission scanning electron microscopy and transmission electron microscopy. X-ray diffraction reveals the presence of Fe3O4 nanoparticles in the composite nanofiber. The resulting sample shows a super paramagnetic behavior.
基金Supported by the Development Project of Jilin Province Science and Technology of China(No.20080344)
文摘A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without the use of a surfactant. The effects of solution properties on the electrospinning of PEO, PAM and PVP solutions were investigated. The viscosity of the solution, charge density carried by the jet, and the surface tension of the solution are the key factors that influence the morphology and diameter size of the fibers. The viscosity of the solution was measured on a modular compact rheometer. The morphology and the diameter size distribution of the fibers were observed under an environmental scanning electron microscope(ESEM). The results show that the diameters of the nanofibers electro spun from the solutions of these water soluble polymers were uniform and less than 300 nm.
基金Supported by the High-Tech Development Program of China(No.2007AA03Z218)
文摘Sulfonated poly(ether ether ketone kctone)(SPEEKK) membranes with different degrees of sulfonation(DS) were successfully prepared via electrospinning method. The morphology of the resulted membranes varies from nanospheres to nanofibers with increasing the concentration of SPEEKK. The conductivities of the membranes prepared under the same condition increase with the DS increasing. The spherical morphological membranes with a DS of 1.2 show the highest proton conductivity, 0.55 S/cm, which is much higher than those of the membranes prepared via normal solution evaporation method. The results show that electrospinning is an efficient method to prepare high performance SPEEKK membranes with different morphologies.
基金supported by a grant from the Korean Ministry of Education,Science and Technology(The Regional Core Research Program/Center for Healthcare Technology&Development,Chonbuk National University,Jeonju 561-756 Republic of Korea)
文摘We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of polyamide-6/TiO2 composite nanofibers was investigated. The resultant nanofibers exhibit good incorporation of TiO2 nanoparticles. The doping of TiO2 nanoparticles into the polyamide-6 nanofibers were confirmed by high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Photoluminescence(PL) and cathodoluminescence(CL) spectroscopy were also used to characterize the samples.The PL and CL spectra reveal that the as-spun polyamide-6/TiO2 composite nanofibers consisted of overlapping of two broad emission bands due to the contribution of polyamide-6(centered at about 475 nm), which might originate from organic functional groups of polyamide-6 and TiO2 nanoparticles(centered around 550 nm). The electrical conductivity of the polyamide-6/TiO2 composite nanofibers on different substrates was carried out.It was found that the electrical conductivity of the polyamide-6/TiO2 composite nanofibers on silicon substrate was in the range of 13 μA, and about 1 to 20 p A for the paper and glass substrates.
基金Supported by the National Natural Science Foundation of China(Nos.21076094,20743005)
文摘Mesoporous TiO2 nanofibers have been synthesized by a new method that combines sol-gel chemistry and electrospinning technique.The obtained mesoporous TiO2 nanofibers were characterized with scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM) and nitrogen adsorptiondesorption isotherms.The photocatalytic performance was evaluated by the photocatalytic degradation of Rhodamine B under UV light irradiation.The results show that mesoporous TiO2 nanofibers exhibit higher photocatalytic activity compared with nonporous TiO2 nanofibers.
文摘Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-like meshes. The in vitro release experiments reveal that the drug release speed and initial burst release were controllable by adjusting the thicknesses of electrospun barrier mesh and drug-loaded mesh. Compared with those of other drug delivery systems, the main advantages of the sandwich structure-like fiber meshes are facile preparation conditions and the generality for hydrophobic and hydrophilic pharmaceuticals.