Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetizatio...Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future.展开更多
The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part ...The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part of stator cores are replaced by soft magnetic composite(SMC)cores,and the lamination direction of the silicon steel sheet in stator cores have be changed.The eddy current loss of the machine with hybrid cores will be reduced greatly as the magnetic flux will not pass through the silicon steel sheet vertically.In order to reduce the influence of end effect,the unequal stator width design method is proposed.With the new design,the symmetry of the permanent magnet flux linkage has been improved greatly and the cogging force caused by the end effect has been reduced.Both 2-D and 3-D finite element methods(FEM)are applied for the quantitative analysis.展开更多
Breakdown characteristics of a gap breakdown load was investigated in this paper, and a reversely switched dynistor (RSD) discharge circuit was designed based on the load. Based on the characteristics of the load, t...Breakdown characteristics of a gap breakdown load was investigated in this paper, and a reversely switched dynistor (RSD) discharge circuit was designed based on the load. Based on the characteristics of the load, the RSD discharge circuit was improved and optimized. The volume of the magnetic switch was reduced. To protect the thyristor and RSD, a diode was anti- parallely connected with the thyristor, which reduced the time requirement when a power voltage was applied to RSD. Experimental results show the circuit designed in this paper can switch a high voltage and high current smoothly, and allows the power voltage to change in a wider range.展开更多
In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(...In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.展开更多
The magnetization switching plays an essential role in spintronic devices.In this study,a Pd(3 nm)/Co(0.14–1.68 nm)/Pd(5 nm) wedge film is deposited on an Mg O(111) substrate by molecular beam epitaxy.We inve...The magnetization switching plays an essential role in spintronic devices.In this study,a Pd(3 nm)/Co(0.14–1.68 nm)/Pd(5 nm) wedge film is deposited on an Mg O(111) substrate by molecular beam epitaxy.We investigate the polar magneto-optical Kerr effect(MOKE) and carry out the first-order reversal curve(FORC) measurements.For the wedge system,it is observed that the Co thickness could drive the spin reorientation transition(SRT) from out-of-plane to in-plane.Meanwhile,we find the different types of magnetization switchings in the continuous SRT process,which can originate from the formation of different magnetic compositions.Our work provides the possibility of tuning the interfacial effect,and paves the way to analyzing magnetization switching.展开更多
Spin-orbit torque(SOT)effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices.Recently,topological insulators(TIs)have gained extensive attentio...Spin-orbit torque(SOT)effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices.Recently,topological insulators(TIs)have gained extensive attention,as they are demonstrated to maintain a large effective spin Hall angle(θeff SH),even at room temperature.However,molecular beam epitaxy(MBE),as a precise deposition method,is required to guarantee favorable surface states of TIs,which hinders the prospect of TIs towards industrial application.In this paper,we demonstrate that Bi2Te3 films grown by magnetron sputtering can provide a notable SOT effect in the heterostructure with perpendicular magnetic anisotropy CoTb ferrimagnetic alloy.By harmonic Hall measurement,a high SOT efficiency(8.7±0.9 Oe/(10^9 A/m^2))and a largeθ^eff SH(3.3±0.3)are obtained at room temperature.Besides,we also observe an ultra-low critical switching current density(9.7×10^9 A/m^2).Moreover,the low-power characteristic of the sputtered Bi2Te3 film is investigated by drawing a comparison with different sputtered SOT sources.Our work may provide an alternative to leverage chalcogenides as a realistic and efficient SOT source in future spintronic devices.展开更多
The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values...The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values of magnetic moment components are critical for the switching effect, which should satisfy a definite condition. The external magnetic field which affects only the oscillation period should be comparable to the internal magnetic field. If the external magnetic field is too small, the switching effect will disappear. The precessions of mx and my are the best for the tilt angle of the external magnetic field θt = 0?, i.e., the field is perpendicular to the sample plane.展开更多
Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The ma...Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications.展开更多
Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-...Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KUare responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90°domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/MgO(001) films at different temperatures.展开更多
Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the gi...Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.展开更多
The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,th...The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.展开更多
Magnetization manipulation by an electric field(E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and ...Magnetization manipulation by an electric field(E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and spintronic devices, due to the ultra-low power consumption of the process. In this review, we summarize the recent progress in E-field controlled magnetism in ferromagnetic/ferroelectric heterostructures with an emphasis on strain-mediated converse magnetoelectric coupling. Firstly, we briefly review the history, the underlying theory of the magnetoelectric coupling mechanism, and the current status of research. Secondly, we illustrate the competitive energy relationship and volatile magnetization switching under an E-field. We then discuss E-field modified ferroelastic domain states and recent progress in non-volatile manipulation of magnetic properties. Finally, we present the pure E-field controlled 180° in-plane magnetization reversal and both E-field and current modified 180° perpendicular magnetization reversal.展开更多
As a combination device for a step-up pulse transformer and a magnetic switch,the saturable pulse transformer is widely used in pulsed-power and plasma technology.A fractional-turn ratio saturable pulse transformer is...As a combination device for a step-up pulse transformer and a magnetic switch,the saturable pulse transformer is widely used in pulsed-power and plasma technology.A fractional-turn ratio saturable pulse transformer is constructed and analyzed in this paper.Preliminary experimental results show that if the primary energy storage capacitors are charged to 300 V,an output voltage of about 19 kV can be obtained across the capacitor connected to the secondary windings of a fractional-tum ratio saturable pulse transformer.Theoretical and experimental results reveal that this kind of pulse transformer is not only able to integrate a step-up transformer and a magnetic switch into one device,but can also lower the saturable inductance of its secondary windings,thus leading to the relatively high step-up ratio of the pulse transformer.Meanwhile,the application of the fractional-turn ratio saturable pulse transformer in a μs range pulse modulator as a voltage step-up device and main switch is also included in this paper.The demonstrated experiments display that an output voltage with an amplitude of about 29 kV,and a 1.6 μs pulse width can be obtained across a 3500 Ω resistive load,based on a pulse modulator,if the primary energy storage capacitors are charged to 300 V.This compact fractional-turn ratio saturable pulse transformer can be applied in many other fields such as surface treatment,corona plasma generation and dielectric barrier discharge.展开更多
Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission...Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.展开更多
The spin Hall magnetoresistance(SMR)effect in Pt/Gd_(3)Fe_(5)O_(12)(Gd IG)bilayers was systematically investigated.The sign of SMR changes twice with increasing magnetic field in the vicinity of the magnetization comp...The spin Hall magnetoresistance(SMR)effect in Pt/Gd_(3)Fe_(5)O_(12)(Gd IG)bilayers was systematically investigated.The sign of SMR changes twice with increasing magnetic field in the vicinity of the magnetization compensation point(TM)of Gd IG.However,conventional SMR theory predicts the invariant SMR sign in the heterostructure composed of a heavy metal film in contact with a ferromagnetic or antiferromagnetic film.We conclude that this is because of the significant enhancement of the magnetic moment of the Gd sub-lattice and the unchanged moment of the Fe sub-lattice with a relatively large field,meaning that a small net magnetic moment is induced at TM.As a result,the Néel vector aligns with the field after the spin-flop transition,meaning that a bi-reorientation of the Néel vector is produced.Theoretical calculations based on the Néel’s theory and SMR theory also support our conclusions.Our findings indicate that the Néel-vector direction of a ferrimagnet can be tuned across a wide range by a relatively low external field around TM.展开更多
With the development of spintronics,spin-transfer torque control of magnetic properties receives considerable attention.In this paper the Landau-Lifshitz-Gilbert equation including the torque term is used to investiga...With the development of spintronics,spin-transfer torque control of magnetic properties receives considerable attention.In this paper the Landau-Lifshitz-Gilbert equation including the torque term is used to investigate the magnetic moment dynamics in the free layer of the ferromagnet/non-magnetic/ferromagnet(FM1/N/FM2) structures.It is found that the reverse critical time τ_c decreases with the current increasing.The critical time τ_c as a function of current for the perpendicular and parallel easy magnetic axes are the same.The critical time τ_c increases with the damping factor α increasing.In the case of large current the influence of the damping factor α is smaller,but in the case of little torque the critical time τ_c increases greatly with the damping increasing.The direction of the magnetization in the fixed layer influences the critical time,when the angle between the magnetization and the z direction changes from 0.1π to 0.4π,the critical time τ_c decreases from 26.7 to 15.6.展开更多
The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Diffe...The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements.展开更多
Spin logics have emerged as a promising avenue for the development of logic-in-memory architectures.In particular,the realization of XOR spin logic gates using a single spin-orbit torque device shows great potential f...Spin logics have emerged as a promising avenue for the development of logic-in-memory architectures.In particular,the realization of XOR spin logic gates using a single spin-orbit torque device shows great potential for low-power stateful logic circuits in the next generation.In this study,we successfully obtained the XOR logic gate by utilizing a spin-orbit torque device with a lateral interface,which was created by local ion implantation in the Ta/Pt/Co/Ta Hall device exhibiting perpendicular magnetic anisotropy.The angle of the lateral interface is set at 45°relative to the current direction,leading to the competition between symmetry breaking and current-driven Néel-type domain wall motion.Consequently,the field-free magnetic switching reversed is realized by the same sign of current amplitude at this interface.Based on this field-free magnetic switching behavior,we successfully proposed an XOR logic gate that could be implemented using only a single spin-orbit torque Hall device.This study provides a potentially viable approach toward efficient spin logics and in-memory computing architectures.展开更多
The common characteristics of most capacitive energy storage systems are the use of gas switch,while the limitation of the recovery of gas switch and ablation of electrode lead to low repetition rates and short life.T...The common characteristics of most capacitive energy storage systems are the use of gas switch,while the limitation of the recovery of gas switch and ablation of electrode lead to low repetition rates and short life.The widely researched technology of magnetic pulse compression has great perspective in long life,high average power and high repetition rates in the pulsed power system.Through the theoretical analysis and simulation of the parameters of the BOOST circuit,the LC circuit and magnetic compression circuit,the pulse generator circuit based on the BOOST circuit,the LC circuit,the pulsed transformer and the magnetic switch is designed,simulated and optimized by Pspice. The output pulse has 55kV voltage and 500ns pulse-width.展开更多
Subject Code:F04 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Wang Kaiyou(王开友)from the Institute of Semiconductors,Chinese Academy of Sciences demon...Subject Code:F04 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Wang Kaiyou(王开友)from the Institute of Semiconductors,Chinese Academy of Sciences demonstrates all-electric and programmable manipulations of ferromagnetic bits without external展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62171013 and 61704005)the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,and 2021YFB3601300)+1 种基金the Beijing Municipal Science and Technology Project,China(Grant No.Z201100004220002)the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-21-BJ-J-1043)。
文摘Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future.
基金This work was supported in part by the National Natural Science Foundation of China under project 51877065Hebei Province Education Department Youth Talent Leading Project under grant BJ2018037in part by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under grant EERIKF2018005.
文摘The performance of traditional flux switching permanent magnet tubular machine(FSPMTM)are improved by using new material and structure in this paper.The existing silicon steel sheet making for all mover cores or part of stator cores are replaced by soft magnetic composite(SMC)cores,and the lamination direction of the silicon steel sheet in stator cores have be changed.The eddy current loss of the machine with hybrid cores will be reduced greatly as the magnetic flux will not pass through the silicon steel sheet vertically.In order to reduce the influence of end effect,the unequal stator width design method is proposed.With the new design,the symmetry of the permanent magnet flux linkage has been improved greatly and the cogging force caused by the end effect has been reduced.Both 2-D and 3-D finite element methods(FEM)are applied for the quantitative analysis.
基金supported by National Natural Science Foundation of China (No. 50907025)China Postdoctoral Science Foundation (No. 20080440931)
文摘Breakdown characteristics of a gap breakdown load was investigated in this paper, and a reversely switched dynistor (RSD) discharge circuit was designed based on the load. Based on the characteristics of the load, the RSD discharge circuit was improved and optimized. The volume of the magnetic switch was reduced. To protect the thyristor and RSD, a diode was anti- parallely connected with the thyristor, which reduced the time requirement when a power voltage was applied to RSD. Experimental results show the circuit designed in this paper can switch a high voltage and high current smoothly, and allows the power voltage to change in a wider range.
基金supported by National Key Research and Development Program of China (2020AAA0109005)the National Natural Science Foundation of China (61674062, 51501168, 41574175, and 41204083)+3 种基金the Fundamental Research Funds for the Central Universities of the China University of Geosciences (Wuhan) (CUG150632 and CUGL160414)the Fundamental Research Funds for National Universities of the China University of Geosciences (Wuhan)the Interdisciplinary program of Wuhan National High Magnetic Field Center (WHMFC202119)Huazhong University of Science and Technology, and Fund from Shenzhen Virtual University Park (2021Szvup091)
文摘In this study,current-induced partial magnetization-based switching was realized through the spin–orbit torque(SOT)in single-layer L1_(0) FePt with a perpendicular anisotropy(K_(u⊥))of 1.19×10^(7) erg·cm^(-3)(1 erg·cm^(-3)=0.1 J·m^(-3)),and its corresponding SOT efficiency(βDL)was 8×10^(-6) Oe·(A·cm^(-2))^(-1)(1 Oe=79.57747 A·m^(-1)),which is several times higher than that of the traditional Ta/CoFeB/MgO structure reported in past work.The SOT in the FePt films originated from the structural inversion asymmetry in the FePt films since the dislocations and defects were inhomogeneously distributed within the samples.Furthermore,the FePt grown on MgO with a granular structure had a larger effective SOT field and effi-ciency than that grown on SrTiO_(3)(STO)with a continuous structure.The SOT efficiency was found to be considerably dependent on not only the sputtering temperature-induced chemical ordering but also the lattice mismatch-induced evolution of the microstructure.Our findings can provide a useful means of efficiently electrically controlling a magnetic bit that is highly thermally stable via SOT.
基金Project supported by the National Basic Research Program of China(Grant Nos.2015CB921403 and 2016YFA0300701)the National Natural Science Foundation of China(Grant Nos.51427801,11374350,and 51671212)
文摘The magnetization switching plays an essential role in spintronic devices.In this study,a Pd(3 nm)/Co(0.14–1.68 nm)/Pd(5 nm) wedge film is deposited on an Mg O(111) substrate by molecular beam epitaxy.We investigate the polar magneto-optical Kerr effect(MOKE) and carry out the first-order reversal curve(FORC) measurements.For the wedge system,it is observed that the Co thickness could drive the spin reorientation transition(SRT) from out-of-plane to in-plane.Meanwhile,we find the different types of magnetization switchings in the continuous SRT process,which can originate from the formation of different magnetic compositions.Our work provides the possibility of tuning the interfacial effect,and paves the way to analyzing magnetization switching.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971024 and 51901008)Young Elite Scientist Sponsorship Program by CAST(Grant No.2017QNRC001)+2 种基金the International Mobility Project(Grant No.B16001)National Key Technology Program of China(Grant No.2017ZX01032101)P.K.A.acknowledges support by a grant from the National Science Foundation,Division of Electrical,Communications and Cyber Systems(NSF ECCS-1853879).
文摘Spin-orbit torque(SOT)effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices.Recently,topological insulators(TIs)have gained extensive attention,as they are demonstrated to maintain a large effective spin Hall angle(θeff SH),even at room temperature.However,molecular beam epitaxy(MBE),as a precise deposition method,is required to guarantee favorable surface states of TIs,which hinders the prospect of TIs towards industrial application.In this paper,we demonstrate that Bi2Te3 films grown by magnetron sputtering can provide a notable SOT effect in the heterostructure with perpendicular magnetic anisotropy CoTb ferrimagnetic alloy.By harmonic Hall measurement,a high SOT efficiency(8.7±0.9 Oe/(10^9 A/m^2))and a largeθ^eff SH(3.3±0.3)are obtained at room temperature.Besides,we also observe an ultra-low critical switching current density(9.7×10^9 A/m^2).Moreover,the low-power characteristic of the sputtered Bi2Te3 film is investigated by drawing a comparison with different sputtered SOT sources.Our work may provide an alternative to leverage chalcogenides as a realistic and efficient SOT source in future spintronic devices.
基金supported by the Advanced Research Plan of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC015)
文摘The voltage controlled magnetic switching effect is verified experimentally. The Landau–Lifshitz–Gilbert(LLG)equation is used to study the voltage controlled magnetic switching. It is found that the initial values of magnetic moment components are critical for the switching effect, which should satisfy a definite condition. The external magnetic field which affects only the oscillation period should be comparable to the internal magnetic field. If the external magnetic field is too small, the switching effect will disappear. The precessions of mx and my are the best for the tilt angle of the external magnetic field θt = 0?, i.e., the field is perpendicular to the sample plane.
基金the Tencent Foundation through the XPLORER PRIZEthe National Key Research and Development Program of China(Grant Nos.2018YFB0407602 and 2021YFB3601303)the National Natural Science Foundation of China(Grant Nos.61627813,11904017,92164206,and 61571023)。
文摘Topological magnetotransport in non-collinear antiferromagnets has attracted extensive attention due to the exotic phenomena such as large anomalous Hall effect(AHE),magnetic spin Hall effect,and chiral anomaly.The materials exhibiting topological antiferromagnetic physics are typically limited in special Mn_3X family such as Mn_3Sn and Mn_3Ge.Exploring the topological magnetotransport in common antiferromagnetic materials widely used in spintronics will not only enrich the platforms for investigating the non-collinear antiferromagnetic physics,but also have great importance for driving the nontrivial topological properties towards practical applications.Here,we report remarkable AHE,anisotropic and negative parallel magnetoresistance in the magnetron-sputtered Ir_(20)Mn_(80)antiferromagnet,which is one of the most widely used antiferromagnetic materials in industrial spintronics.The ab initio calculations suggest that the Ir_4Mn_(16)(IrMn_4)or Mn_3Ir nanocrystals hold nontrivial electronic band structures,which may contribute to the observed intriguing magnetotransport properties in the Ir_(20)Mn_(80).Further,we demonstrate the spin–orbit torque switching of the antiferromagnetic Ir_(20)Mn_(80)by the spin Hall current of Pt.The presented results highlight a great potential of the magnetron-sputtered Ir_(20)Mn_(80)film for exploring the topological antiferromagnet-based physics and spintronics applications.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921403,2011CB921801,and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.51427801,11374350,and 11274361)
文摘Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KUare responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90°domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/MgO(001) films at different temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11904017, 11974145, 51901008, and 12004024)Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020ZD28)+1 种基金platform from Qingdao Science and Technology Commissionthe Fundamental Research Funds for the Central Universities of China
文摘Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni_(20)Fe_(80) and W/Co_(20)Fe_(60)B_(20))and the topological insulator/ferromagnet(Bi_(2)Se_(3)/Ni_(20)Fe_(80)).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.
基金the National Natural Science Foundation of China(Grant Nos.91963201 and 51671098)the 111 Project(Grant No.B20063)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University PCSIRT(Grant No.IRT16R35)the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA474).
文摘The spin–orbit torque via the spin Hall effect of heavy metals has shown promising prospect in driving the magnetization switching in spintronic devices due to the generated spin current from heavy metals.Recently,the 3d-light metals have been predicted the ability to generate orbital current and the associated orbital torques from the orbital Hall effect.However,few experiments have been carried out since it is quite hard to directly detect the orbital current-generated orbital torque.Here,we report an effective method to demonstrate the strong orbital torques in light metal Cr through a conversion process from orbital current to spin current by introducing the Pt interfacial layer in perpendicularly magnetized symmetric Pt/Co/Pt structures.A quite large and monotonically growth of orbital torque efficiency in Pt/Co/Pt/Cr with the increase of the thickness of Cr layer is obtained with the largest effective orbital torque efficiency around 2.6 Oe/(MA·cm^(-2))(1 Oe=79.5775 A·m^(-1)).The ability of orbital torque to drive the magnetization switching is also reported with the critical switching current density down to the order of 106A·cm^(-2).Our findings prove the efficiency for switching the magnetization from light metal Cr layers through the orbital Hall effect.
基金Project supported by the National Natural Science Foundation of China(Grant No.51671098)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT16R35)
文摘Magnetization manipulation by an electric field(E-field) in ferromagnetic/ferroelectric heterostructures has attracted increasing attention because of the potential applications in novel magnetoelectric devices and spintronic devices, due to the ultra-low power consumption of the process. In this review, we summarize the recent progress in E-field controlled magnetism in ferromagnetic/ferroelectric heterostructures with an emphasis on strain-mediated converse magnetoelectric coupling. Firstly, we briefly review the history, the underlying theory of the magnetoelectric coupling mechanism, and the current status of research. Secondly, we illustrate the competitive energy relationship and volatile magnetization switching under an E-field. We then discuss E-field modified ferroelastic domain states and recent progress in non-volatile manipulation of magnetic properties. Finally, we present the pure E-field controlled 180° in-plane magnetization reversal and both E-field and current modified 180° perpendicular magnetization reversal.
基金supported by National Natural Science Foundation of China under Grant Nos.51477177 and 51641707
文摘As a combination device for a step-up pulse transformer and a magnetic switch,the saturable pulse transformer is widely used in pulsed-power and plasma technology.A fractional-turn ratio saturable pulse transformer is constructed and analyzed in this paper.Preliminary experimental results show that if the primary energy storage capacitors are charged to 300 V,an output voltage of about 19 kV can be obtained across the capacitor connected to the secondary windings of a fractional-tum ratio saturable pulse transformer.Theoretical and experimental results reveal that this kind of pulse transformer is not only able to integrate a step-up transformer and a magnetic switch into one device,but can also lower the saturable inductance of its secondary windings,thus leading to the relatively high step-up ratio of the pulse transformer.Meanwhile,the application of the fractional-turn ratio saturable pulse transformer in a μs range pulse modulator as a voltage step-up device and main switch is also included in this paper.The demonstrated experiments display that an output voltage with an amplitude of about 29 kV,and a 1.6 μs pulse width can be obtained across a 3500 Ω resistive load,based on a pulse modulator,if the primary energy storage capacitors are charged to 300 V.This compact fractional-turn ratio saturable pulse transformer can be applied in many other fields such as surface treatment,corona plasma generation and dielectric barrier discharge.
基金supported by the High Technology Resesarch Development Project of China (863)
文摘Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0303202 and 2016YFA0300803)the National Natural Science Foundation of China(Grant Nos.11904194,11727808,and 11674159)the Fundamental Research Funds for the Central Universities,China(Grant No.020414380121)。
文摘The spin Hall magnetoresistance(SMR)effect in Pt/Gd_(3)Fe_(5)O_(12)(Gd IG)bilayers was systematically investigated.The sign of SMR changes twice with increasing magnetic field in the vicinity of the magnetization compensation point(TM)of Gd IG.However,conventional SMR theory predicts the invariant SMR sign in the heterostructure composed of a heavy metal film in contact with a ferromagnetic or antiferromagnetic film.We conclude that this is because of the significant enhancement of the magnetic moment of the Gd sub-lattice and the unchanged moment of the Fe sub-lattice with a relatively large field,meaning that a small net magnetic moment is induced at TM.As a result,the Néel vector aligns with the field after the spin-flop transition,meaning that a bi-reorientation of the Néel vector is produced.Theoretical calculations based on the Néel’s theory and SMR theory also support our conclusions.Our findings indicate that the Néel-vector direction of a ferrimagnet can be tuned across a wide range by a relatively low external field around TM.
文摘With the development of spintronics,spin-transfer torque control of magnetic properties receives considerable attention.In this paper the Landau-Lifshitz-Gilbert equation including the torque term is used to investigate the magnetic moment dynamics in the free layer of the ferromagnet/non-magnetic/ferromagnet(FM1/N/FM2) structures.It is found that the reverse critical time τ_c decreases with the current increasing.The critical time τ_c as a function of current for the perpendicular and parallel easy magnetic axes are the same.The critical time τ_c increases with the damping factor α increasing.In the case of large current the influence of the damping factor α is smaller,but in the case of little torque the critical time τ_c increases greatly with the damping increasing.The direction of the magnetization in the fixed layer influences the critical time,when the angle between the magnetization and the z direction changes from 0.1π to 0.4π,the critical time τ_c decreases from 26.7 to 15.6.
文摘The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements.
基金financially supported by the Chinese Academy of Sciences (Nos.XDA18000000 and Y201926)the Youth Innovation Promotion Association of CAS (No.2020118)+1 种基金Beijing Municipal Natural Science Foundation (No.4244071)the Funding Support from Research Grants Council—Early Career Scheme (No.26200520)。
文摘Spin logics have emerged as a promising avenue for the development of logic-in-memory architectures.In particular,the realization of XOR spin logic gates using a single spin-orbit torque device shows great potential for low-power stateful logic circuits in the next generation.In this study,we successfully obtained the XOR logic gate by utilizing a spin-orbit torque device with a lateral interface,which was created by local ion implantation in the Ta/Pt/Co/Ta Hall device exhibiting perpendicular magnetic anisotropy.The angle of the lateral interface is set at 45°relative to the current direction,leading to the competition between symmetry breaking and current-driven Néel-type domain wall motion.Consequently,the field-free magnetic switching reversed is realized by the same sign of current amplitude at this interface.Based on this field-free magnetic switching behavior,we successfully proposed an XOR logic gate that could be implemented using only a single spin-orbit torque Hall device.This study provides a potentially viable approach toward efficient spin logics and in-memory computing architectures.
文摘The common characteristics of most capacitive energy storage systems are the use of gas switch,while the limitation of the recovery of gas switch and ablation of electrode lead to low repetition rates and short life.The widely researched technology of magnetic pulse compression has great perspective in long life,high average power and high repetition rates in the pulsed power system.Through the theoretical analysis and simulation of the parameters of the BOOST circuit,the LC circuit and magnetic compression circuit,the pulse generator circuit based on the BOOST circuit,the LC circuit,the pulsed transformer and the magnetic switch is designed,simulated and optimized by Pspice. The output pulse has 55kV voltage and 500ns pulse-width.
文摘Subject Code:F04 With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Wang Kaiyou(王开友)from the Institute of Semiconductors,Chinese Academy of Sciences demonstrates all-electric and programmable manipulations of ferromagnetic bits without external