The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anoma...The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anomalies with a broad spectrum of sizes and intensities,which arise from geological and tectonic features.The lithospheric magnetic field is known from surface observations,and on larger scales from above-surface measurements.The increase in recent decades of satellites dedicated to measuring the Earth’s magnetic field has improved significantly our models of the Earth’s magnetic environment.Based on these increasing observations,a number of comprehensive field models have been constructed,some of which focus solely on the lithosphere,such as the MF model series.We present a map of lithospheric magnetic anomalies at 400 km altitude,based on a vertically integrated magnetization model.This height was chosen because it is the expected orbital altitude of the Macao Science Satellite-1(MSS-1)mission.The model presented herein indicates that the amplitude of the lithospheric anomalies at 400 km altitude is between-14.8 n T and 18.2 n T.This information is useful because it provides a reference for the lithospheric source of the Earth’s magnetic field that contributes to the magnetic measurements made from satellite instruments.The low inclination orbit of the MSS-1 mission will provide information that is sensitive to lateral variation within the lithosphere;these variations arise from plate tectonic features with longitudinal extent.In conclusion,the new MSS-1mission will provide valuable information in detecting compositional variations in the lithosphere,and in delineating large-scale geological structures.展开更多
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a...The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic ...In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism.展开更多
We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless...We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless plasmas when,e.g.,solar wind interacts with planetary magnetospheres or a magnetic field is generated in AGN jets.We find that as in the case of magnetohydrodynamic(MHD)KHI,in the kinetic regime,the presence of an external magnetic field reduces the growth rate of the instability.In the MHD case,there is a known threshold magnetic field for KHI stabilization,while for ESKHI this is to be analytically determined.Without a kinetic analytical expression,we use several numerical simulation runs to establish an empirical dependence of ESKHI growth rate,Γ(B_(0))ω_(pe),on the strength of the applied external magnetic field.We find the best fit is hyperbolic,Γ(B_(0))ω_(pe)=Γ_(0)ω_(pe)/(A+BB_(0)),where Γ_(0) is the ESKHI growth rate without an external magnetic field and B_(0)=B_(0)/B_(MHD)is the ratio of external and two-fluid MHD stability threshold magnetic field,derived here.An analytical theory to back up this growth rate dependence on the external magnetic field is needed.The results suggest that in astrophysical settings where a strong magnetic field pre-exists,the generation of an additional magnetic field by the ESKHI is suppressed,which implies that nature provides a“safety valve”—natural protection not to“over-generate”magnetic field by the ESKHI mechanism.Remarkably,we find that our two-fluid MHD threshold magnetic field is the same(up to a factor √γ_(0))as the DC saturation magnetic field,previously predicted by fully kinetic theory.展开更多
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic sur...The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic surfaces has hindered their industrialization.To address this,we present a groundbreaking tunable plasmonic platform design achieved throughmagnetic field(MF)assisted ultrafast laser direct deposition in air.Through precise control of metal nanoparticles(NPs),with cobalt(Co)serving as the model material,employing an MF,and fine-tuning ultrafast laser parameters,we have effectively converted coarse and non-uniform NPs into densely packed,uniform,and ultrafine NPs(~3 nm).This revolutionary advancement results in the creation of customizable plasmonic‘hot spots,’which play a pivotal role insurface-enhanced Raman spectroscopy(SERS)sensors.The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energyenhancement.When the plasmonic nanostructures resonate with incident light,they generate intense local electromagnetic fields,thus vastly increasing the Raman scattering signal.This enhancement leads to an outstanding 2–18 fold boost in SERS performance and unparalleled sensing sensitivity down to 10^(-10)M.Notably,the plasmonic platform also demonstratesrobustness,retaining its sensing capability even after undergoing 50 cycles of rinsing andre-loading of chemicals.Moreover,this work adheres to green manufacturing standards,making it an efficient and environmentally friendly method for customizing plasmonic‘hot spots’inSERS devices.Our study not only achieves the formation of high-density,uniform,and ultrafine NP arrays on a tunable plasmonic platform but also showcases the profound relation betweenplasmonic resonance and energy enhancement.The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-relatedapplications,including photocatalysis,photovoltaics,and clean water,propelling us closer to a sustainable and cleaner future.展开更多
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup...Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.展开更多
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re...The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.展开更多
Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacolog...Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses.展开更多
The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mod...The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.展开更多
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair...Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.展开更多
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-...Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-off dilemma in GH605 superalloy is successfully overcome.The UMF treatment can effectively refine the grains and increase the solid solubility,leading to the high yield strength.The main deformation mechanism in the as-forged alloy is dislocation slipping.By contrast,multiple deformation mechanisms,including stacking faults,twining,dislocation slipping,and their strong interactions are activated in the UMF-treated sample during compression deformation,which enhances the strength and ductility simultaneously.In addition,the precipitation of hard Laves phases along the grain boundaries can be obtained after UMF treatment,hindering crack propagation during compression deformation.展开更多
The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around...The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around the core region.The laser-driven ion-beam trace probe(LITP)has been proven to diagnose the B_(p)profile in FRCs recently,whereas the existing iterative reconstruction approach cannot handle the measurement errors well.In this work,the machine learning approach,a fast-growing and powerful technology in automation and control,is applied to B_(p)reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach.The machine learning approach achieves a more accurate reconstruction of B_(p)profile when 20%detector errors are considered,15%B_(p)fluctuation is introduced and the size of the detector is remarkably reduced.Therefore,machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices.展开更多
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic...Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.展开更多
基金supported by the Macao Foundationby the Preresearch Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administration+1 种基金by the Macao Science and Technology Development Fund,grant No.0001/2019/A1PF Liu is funded by the Science and Technology Development Fund,Macao SAR(File No.0002/2019/APD)。
文摘The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anomalies with a broad spectrum of sizes and intensities,which arise from geological and tectonic features.The lithospheric magnetic field is known from surface observations,and on larger scales from above-surface measurements.The increase in recent decades of satellites dedicated to measuring the Earth’s magnetic field has improved significantly our models of the Earth’s magnetic environment.Based on these increasing observations,a number of comprehensive field models have been constructed,some of which focus solely on the lithosphere,such as the MF model series.We present a map of lithospheric magnetic anomalies at 400 km altitude,based on a vertically integrated magnetization model.This height was chosen because it is the expected orbital altitude of the Macao Science Satellite-1(MSS-1)mission.The model presented herein indicates that the amplitude of the lithospheric anomalies at 400 km altitude is between-14.8 n T and 18.2 n T.This information is useful because it provides a reference for the lithospheric source of the Earth’s magnetic field that contributes to the magnetic measurements made from satellite instruments.The low inclination orbit of the MSS-1 mission will provide information that is sensitive to lateral variation within the lithosphere;these variations arise from plate tectonic features with longitudinal extent.In conclusion,the new MSS-1mission will provide valuable information in detecting compositional variations in the lithosphere,and in delineating large-scale geological structures.
基金Project supported by the DST-FIST Program for Higher Education Institutions of India(No. SR/FST/MS-I/2018/23(C))。
文摘The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
基金Project supported by the National Natural Science Foundation of China (Grant No.61774001)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,China (Grant No.KF202203)+1 种基金the NSF of Changsha City (Grant No.kq2208008)the NSF of Hunan Province (Grant No.2023JJ30116)。
文摘In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism.
文摘We use particle-in-cell,fully electromagnetic,plasma kinetic simulation to study the effect of external magnetic field on electron scale Kelvin–Helmholtz instability(ESKHI).The results are applicable to collisionless plasmas when,e.g.,solar wind interacts with planetary magnetospheres or a magnetic field is generated in AGN jets.We find that as in the case of magnetohydrodynamic(MHD)KHI,in the kinetic regime,the presence of an external magnetic field reduces the growth rate of the instability.In the MHD case,there is a known threshold magnetic field for KHI stabilization,while for ESKHI this is to be analytically determined.Without a kinetic analytical expression,we use several numerical simulation runs to establish an empirical dependence of ESKHI growth rate,Γ(B_(0))ω_(pe),on the strength of the applied external magnetic field.We find the best fit is hyperbolic,Γ(B_(0))ω_(pe)=Γ_(0)ω_(pe)/(A+BB_(0)),where Γ_(0) is the ESKHI growth rate without an external magnetic field and B_(0)=B_(0)/B_(MHD)is the ratio of external and two-fluid MHD stability threshold magnetic field,derived here.An analytical theory to back up this growth rate dependence on the external magnetic field is needed.The results suggest that in astrophysical settings where a strong magnetic field pre-exists,the generation of an additional magnetic field by the ESKHI is suppressed,which implies that nature provides a“safety valve”—natural protection not to“over-generate”magnetic field by the ESKHI mechanism.Remarkably,we find that our two-fluid MHD threshold magnetic field is the same(up to a factor √γ_(0))as the DC saturation magnetic field,previously predicted by fully kinetic theory.
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金the support by the Office of Naval Research’s NEPTUNE Program under the Grant Number N00014-16-1-3109the National Science Foundation CMMI NanoManufacturing Program。
文摘The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic surfaces has hindered their industrialization.To address this,we present a groundbreaking tunable plasmonic platform design achieved throughmagnetic field(MF)assisted ultrafast laser direct deposition in air.Through precise control of metal nanoparticles(NPs),with cobalt(Co)serving as the model material,employing an MF,and fine-tuning ultrafast laser parameters,we have effectively converted coarse and non-uniform NPs into densely packed,uniform,and ultrafine NPs(~3 nm).This revolutionary advancement results in the creation of customizable plasmonic‘hot spots,’which play a pivotal role insurface-enhanced Raman spectroscopy(SERS)sensors.The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energyenhancement.When the plasmonic nanostructures resonate with incident light,they generate intense local electromagnetic fields,thus vastly increasing the Raman scattering signal.This enhancement leads to an outstanding 2–18 fold boost in SERS performance and unparalleled sensing sensitivity down to 10^(-10)M.Notably,the plasmonic platform also demonstratesrobustness,retaining its sensing capability even after undergoing 50 cycles of rinsing andre-loading of chemicals.Moreover,this work adheres to green manufacturing standards,making it an efficient and environmentally friendly method for customizing plasmonic‘hot spots’inSERS devices.Our study not only achieves the formation of high-density,uniform,and ultrafine NP arrays on a tunable plasmonic platform but also showcases the profound relation betweenplasmonic resonance and energy enhancement.The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-relatedapplications,including photocatalysis,photovoltaics,and clean water,propelling us closer to a sustainable and cleaner future.
基金Project supported by the National Key R&D Program of China (Grant Nos.2022YFA1603200 and 2022YFA1603203)the National Natural Science Foundation of China (Grant Nos.12075030,12135001,12175018,and 12325305)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25030700)the Research Grants Council of Hong (Grant No.14307118)the Youth Interdisciplinary Team (Grant No.JCTD-2022-05)supported by the China Postdoctoral International Exchange Program。
文摘Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104414,12122412,12104464,and 12104413)the China Postdoctoral Science Foundation(Grant No.2021M702955).
文摘The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.
基金supported by the National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+5 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Anhui Provincial Natural Science Foundation(2308085QE183,2308085QE181)CASHIPS Director’s Fund(YZJJ2024QN44,YZJJ2023QN43)Heye Health Technology Chong Ming Project(HYCMP2021010)China Post-doctoral Science Foundation(2023M743536)Science Research Fund for Postdoctoral in Anhui Province(2023B669)。
文摘Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses.
基金supported by the Beijing Municipal Natural Science Foundation (No. 1242015)Discipline Construction of Material Science and Engineering (Nos. 21090122014 and 21090123007)。
文摘The characteristics of the blue core phenomenon observed in a divergent magnetic field helicon plasma are investigated using two different helical antennas, namely right-handed and lefthanded helical antennas. The mode transition, discharge image, spatial profiles of plasma density and electron temperature are diagnosed using a Langmuir probe, a Nikon D90 camera,an intensified charge-coupled device camera and an optical emission spectrometer, respectively.The results demonstrated that the blue core phenomenon appeared in the upstream region of the discharge tube at a fixed magnetic field under both helical antennas. However, it is more likely to appear in a right-handed helical antenna, in which the plasma density and ionization rate of the helicon plasma are higher. The spatial profiles of the plasma density and electron temperature are also different in both axial and radial directions for these two kinds of helical antenna. The wavelength calculated based on the dispersion relation of the bounded whistler wave is consistent with the order of magnitude of plasma length. It is proved that the helicon plasma is part of the wave mode discharge mechanism.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074130)the Natural Science Foundation of Guangdong Province (Grant No.2021A1515012340)。
文摘Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
基金the fund of National Key Laboratory for Precision Hot Processing of Metals,China(No.6142909200104)State Key Laboratory of Solidification Processing(NPU),China(No.2022-TS-08)National Training Program of Innovation and Entrepreneurship for Undergraduates.We thank Dr.ZHENG from ZKKF(Beijing)Science&Technology Company for supporting the characterization of the materials.
文摘Undercooling solidification under a magnetic field(UMF)is an effective way to tailor the microstructure and properties of Co-based alloys.In this study,by attributing to the UMF treatment,the strength−ductility trade-off dilemma in GH605 superalloy is successfully overcome.The UMF treatment can effectively refine the grains and increase the solid solubility,leading to the high yield strength.The main deformation mechanism in the as-forged alloy is dislocation slipping.By contrast,multiple deformation mechanisms,including stacking faults,twining,dislocation slipping,and their strong interactions are activated in the UMF-treated sample during compression deformation,which enhances the strength and ductility simultaneously.In addition,the precipitation of hard Laves phases along the grain boundaries can be obtained after UMF treatment,hindering crack propagation during compression deformation.
基金supported by the National MCF Energy R&D Program of China(No.2018YFE0303100)National Natural Science Foundation of China(No.11975038)。
文摘The diagnostic of poloidal magnetic field(B_(p))in field-reversed configuration(FRC),promising for achieving efficient plasma confinement due to its highβ,is a huge challenge because B_(p)is small and reverses around the core region.The laser-driven ion-beam trace probe(LITP)has been proven to diagnose the B_(p)profile in FRCs recently,whereas the existing iterative reconstruction approach cannot handle the measurement errors well.In this work,the machine learning approach,a fast-growing and powerful technology in automation and control,is applied to B_(p)reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach.The machine learning approach achieves a more accurate reconstruction of B_(p)profile when 20%detector errors are considered,15%B_(p)fluctuation is introduced and the size of the detector is remarkably reduced.Therefore,machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
文摘Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.