Perpendicular synthetic-antiferromagnet(p-SAF) has broad applications in spin-transfer-torque magnetic random access memory and magnetic sensors. In this study, the p-SAF films consisting of (Co/Ni)3]/Ir(tIr)/[(Ni/Co)...Perpendicular synthetic-antiferromagnet(p-SAF) has broad applications in spin-transfer-torque magnetic random access memory and magnetic sensors. In this study, the p-SAF films consisting of (Co/Ni)3]/Ir(tIr)/[(Ni/Co)3are fabricated by magnetron sputtering technology. We study the domain structure and switching field distribution in p-SAF by changing the thickness of the infrared space layer. The strongest exchange coupling field(Hex) is observed when the thickness of Ir layer(tIr) is 0.7 nm and becoming weak according to the Ruderman–Kittel–Kasuya–Yosida-type coupling at 1.05 nm,2.1 nm, 4.55 nm, and 4.9 nm in sequence. Furthermore, the domain switching process between the upper Co/Ni stack and the bottom Co/Ni stack is different because of the antiferromagnet coupling. Compared with ferromagnet coupling films, the antiferromagnet samples possess three irreversible reversal regions in the first-order reversal curve distribution.With tIrincreasing, these irreversible reversal regions become denser and smaller. The results from this study will help us understand the details of the magnetization reversal process in the p-SAF.展开更多
The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnet...The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnetic simulation methods. Based on the Landau-Lifshitz-Gilbert equation, a model with a special gridding was proposed to calculate the giant magnetoresistance ratio (MR) and investigate the magnetization reversal mode. The relationship between MR and the external magnetic field was obtained and analyzed. Studies into the variation of the magnetization distribution reveal that the magnetization reversal mode, that is, the jump variation mode for NiFe/Cu/CoFe/IrMn, depends greatly on the antiferromagnetic coupling behavior between the pinned layer and the antiferromagnetic layer. It is also found that the switching field is almost linear with the exchange coefficient.展开更多
We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two el...We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.展开更多
Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigate...Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t 〈 6 ML (monolayers) exhibit perpen-dicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.展开更多
In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization pro...In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.展开更多
The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Diffe...The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements.展开更多
Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The mag...Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets.展开更多
High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/Mg...High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range.展开更多
The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter...The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter of wire. For very thin wires, the reversal occurs by pseudo-coherent rotation. With increasing diameter, magnetization reversal takes place via different nucleation (the transverse domain wall and the vortex domain wall) and subsequent propagation. The reason of transition from the transverse domain wall to the vortex domain wall is given by analytical studies. With further increase of the diameter, the reversal nuclear domain wall becomes tundishoshaped form. As the diameter increases, the width of wall becomes larger.展开更多
Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due ...Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer.However,mapping the distribution of pinned spins is challenging.In this work,we directly image the reverse domain nucleation and domain wall movement process in the exchange biased Co Fe B/Ir Mn bilayers by Lorentz transmission electron microscopy.From the in-situ experiments,we obtain the distribution mapping of the pinning strength,showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer.Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems.展开更多
Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and ...Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and perpendicular to the applied field. At low temperatures, coercivity Hc oc (tFM)^-n, n = 1.5 and 1.38 for x = 0.2 and 0.4, respectively, in agreement with the random field model. At room temperature, the coercivity is nearly proportional to the inverse FM layer thickness. In addition to the exchange field and the coercivity, the characteristic of the magnetization reversal mechanism was found to change with temperature. At temperatures below 180 K, magnetization reversal process along the unidirectional axis is accompanied only by nucleation and pinning of domain wall while magnetization rotation is also involved at high temperatures.展开更多
The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample mag...The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM). Owing to the significant modification of the energy surface in remanent state by slight misorientation from (111) plane and a uniaxial magnetic anisotropy, the azimuthal angular dependence of in-plane resonance field shows a six-fold symmetry with a weak uniaxial contribution, while the remanence of hysteresis loops displays a two-fold one. The competition between the first and second magnetoerystalline anisotropies may result in the switching of in-plane easy axis of the system. Combining the FMR and VSM measurements, the magnetization reversal mechanism has also been determined.展开更多
In an exchange-bias system, the barriers with intrinsic potential energy may be asymmetric due to unidirectional anisotropy. Based on the Stoner–Wohlfarth model, we show that the asymmetric barriers may lead to four ...In an exchange-bias system, the barriers with intrinsic potential energy may be asymmetric due to unidirectional anisotropy. Based on the Stoner–Wohlfarth model, we show that the asymmetric barriers may lead to four kinds of dynamical process underlying the hysteresis-loop measurement. These kinds of dynamical processes are different in a topology-like property, which can be controlled by the orientation of the external field. In our study, a new analysis approach has been proposed to reveal the dynamical behaviors of magnetization reversal. With this approach, coercivity, exchange-bias field, and asymmetry of hysteresis loops can be quantitatively obtained.展开更多
We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act ...We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.展开更多
The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz-Gilbert equation. The evolutions of the magnetic d...The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz-Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.展开更多
The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial...The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an "l-jump" process near the easy axis, or a "2-jump" process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data.展开更多
Realization of a magnetization reversal by an external electric field is vital for developing ultra-low-power spintronic devices.In this report,starting from energy band engineering,a general design principle is propo...Realization of a magnetization reversal by an external electric field is vital for developing ultra-low-power spintronic devices.In this report,starting from energy band engineering,a general design principle is proposed for achieving electrical manipulation of a nonvolatile 180°magnetization reversal.A half semiconductor(HSC)and a bipolar magnetic semiconductor(BMS)are selected as the model of magnetic layers,whose conduction-band minimum and valence-band maximum are in the same and opposite spin states,respectively.Based on the analysis of virtual hopping and tight-binding models,the interlayer coupling of HSC/insulator/BMS devices is successfully tuned between ferromagnetic and antiferromagnetic interactions by varying electric field directions.Moreover,the interlayer coupling nearly disappears after removing the electric field,proving the nonvolatile magnetization reversal.Using first-principles calculations,the feasibility of present design strategy is further confirmed by a representative device with the structure of CrBr3/h-BN/2H-VSe_(2).This design guideline and physical phenomena may open an avenue to explore magnetoelectric coupling mechanisms and develop next-generation spintronic devices.展开更多
The effect of Zr content on exchange coupling and magnetization reversal of the Ndl2.3Fe81.7_xZrxB6 (x=0-3.0) ribbons was systematically investigated. Interaction domains were imaged by magnetic force microscopy (...The effect of Zr content on exchange coupling and magnetization reversal of the Ndl2.3Fe81.7_xZrxB6 (x=0-3.0) ribbons was systematically investigated. Interaction domains were imaged by magnetic force microscopy (MFM). The strength of interactions determined by Wohlfarth's analysis increased first with Zr content x increasing, reached the maximum value at x=l.5, and then decreased with x further increasing. Initial magnetization curves and dependence of coercivity and remanence on applied magnetic field showed that the mechanism of coercivity in all samples was mainly of exchange coupling pinning type, which was enhanced with x increasing. It was found by three-dimensional atom probe (3DAP) that Zr atoms did not partition into the Nd2Fe14B hard magnetic phase, but significantly enriched at the interfacial region.展开更多
The effect of Nb addition on the microstructure and magnetic properties of nanocrystaUine Sm(CobaiNbxZr0.02)7 permanent magnet were investigated, The magnetization reversal behavior for ball milled Sm(CobaiNbxZr0.0...The effect of Nb addition on the microstructure and magnetic properties of nanocrystaUine Sm(CobaiNbxZr0.02)7 permanent magnet were investigated, The magnetization reversal behavior for ball milled Sm(CobaiNbxZr0.02)7 samples with high coercivity was investigated by analyzing hysteresis curves and recoil loops of demagnetization curves. Nb addition proved to result in relevant improvement in the magnetic properties, especially in the coercivity He. It was shown that the magnetic properties of Sm(CobalNbx- Zr0.02)7 nanocrystalline magnets were improved by an additional 0.06 at.% Nb. In particular, Hc was improved from 602 to 786 kA/m at room temperature. The maximum value of the integrated recoil loops area for 0.06 at.% Nb-doped samples of 1.81 kJ/m3 was much lower than that of the Nb-free sample, which could be explained by a smaller recoverable portion of the magnetization remaining in the Nb-doped sample when the applied field was below the coercivity Hc. The nucleation field Hn for irreversible magnetization reversal of the magnetically hard phase were calculated by analyzed in terms of the△Mirrev-H curve and the Kondorsky model.展开更多
Effect of thermal annealing on the magnetization reversal behavior of α-Fe/Nd2Fe14B alloys was investigated. A drastic in- crease of the remanence Mr from 0.67 up to 0.87 T and remanence ratio Mr/Ms from 0.66 up to 0...Effect of thermal annealing on the magnetization reversal behavior of α-Fe/Nd2Fe14B alloys was investigated. A drastic in- crease of the remanence Mr from 0.67 up to 0.87 T and remanence ratio Mr/Ms from 0.66 up to 0.76, respectively, was observed in the α-Fe/NdEFel413 alloys annealed at 610 ℃ as compared with the as-quenched sample. Whereas the further annealing at 680 ℃ resulted in a strong increase of the corecivity Hc as high as 491 kA/m but a slight decrease in Mr. The analysis result of the magnetization re- versal behavior showed that the maximum value of the integrated recoil loop area about 1.58 kJ/m3 was obtained in the α-Fe/Nd2Fe14B alloys at the annealing temperature of 610℃, significantly lower than other annealed samples. This indicated a sig- nificant advantage for the application of this material as permanent magnets in electrical machines and generators due to a low energy loss.展开更多
基金Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA775)the Science and Technology Program of Lanzhou, China (Grant No. 2021-1-157)+2 种基金the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2020A1515110998 and 2022A1515012123)the Outstanding Youth Foundation of Gansu Academy of Science, China (Grant No. 2021YQ01)the Innovative Team Construction Project of Gansu Academy of Sciences, China (Grant No. 2020CX005-01)。
文摘Perpendicular synthetic-antiferromagnet(p-SAF) has broad applications in spin-transfer-torque magnetic random access memory and magnetic sensors. In this study, the p-SAF films consisting of (Co/Ni)3]/Ir(tIr)/[(Ni/Co)3are fabricated by magnetron sputtering technology. We study the domain structure and switching field distribution in p-SAF by changing the thickness of the infrared space layer. The strongest exchange coupling field(Hex) is observed when the thickness of Ir layer(tIr) is 0.7 nm and becoming weak according to the Ruderman–Kittel–Kasuya–Yosida-type coupling at 1.05 nm,2.1 nm, 4.55 nm, and 4.9 nm in sequence. Furthermore, the domain switching process between the upper Co/Ni stack and the bottom Co/Ni stack is different because of the antiferromagnet coupling. Compared with ferromagnet coupling films, the antiferromagnet samples possess three irreversible reversal regions in the first-order reversal curve distribution.With tIrincreasing, these irreversible reversal regions become denser and smaller. The results from this study will help us understand the details of the magnetization reversal process in the p-SAF.
基金financially supported by the National Natural Science Foundation of China (Nos. 61025021and 60936002)the National Key Project of Scienceand Technology of China (Nos. 2009ZX02023-001-3 and 2011ZX02403-002)the Independent Scientific Research of Tsinghua University (No. 2010THZ0)
文摘The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnetic simulation methods. Based on the Landau-Lifshitz-Gilbert equation, a model with a special gridding was proposed to calculate the giant magnetoresistance ratio (MR) and investigate the magnetization reversal mode. The relationship between MR and the external magnetic field was obtained and analyzed. Studies into the variation of the magnetization distribution reveal that the magnetization reversal mode, that is, the jump variation mode for NiFe/Cu/CoFe/IrMn, depends greatly on the antiferromagnetic coupling behavior between the pinned layer and the antiferromagnetic layer. It is also found that the switching field is almost linear with the exchange coefficient.
基金Supported by the National Natural Science Foundation of China under Grant No 11274208
文摘We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2001CB610605) and the National Natural Science Foundation of China (Grant No 10474132).
文摘Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t 〈 6 ML (monolayers) exhibit perpen-dicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.
基金supported by the National Natural Science Foundation of China (Grant No 50671048)
文摘In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants.
文摘The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements.
基金This work was financially supported by the National Natural Science Foundation of China (No.50371019) and Beijing Municipal Science & Technology Commission Key Project (D0406002000091).
文摘Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets.
基金supported by the ISF-NSFC Joint Research Project of International Cooperation and Exchanges(Grant No.51961145305)the National Natural Science Foundation of China(Grant Nos.52171191 and 51771145)+1 种基金the Shaanxi Key Program for International Science and Technology Cooperation Projects(Grant No.2021KWZ-12)the Youth Innovation Team of Shaanxi Universities
文摘High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range.
基金supported by the National Natural Sci-ence Foundation of China under Grant No. 60571043 the Natural Science Foundation of Hunan Provinceof China under Grant No. 04JJ3078.
文摘The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter of wire. For very thin wires, the reversal occurs by pseudo-coherent rotation. With increasing diameter, magnetization reversal takes place via different nucleation (the transverse domain wall and the vortex domain wall) and subsequent propagation. The reason of transition from the transverse domain wall to the vortex domain wall is given by analytical studies. With further increase of the diameter, the reversal nuclear domain wall becomes tundishoshaped form. As the diameter increases, the width of wall becomes larger.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0201102)the National Natural Science Foundation of China(Grant No.51571208)+3 种基金the Instrument Developing Project of Chinese Academy of Sciences(Grant No.YZ201536)the Program for Key Science and Technology Innovation Team of Zhejiang Province,China(Grant No.2013TD08)the K C Wong Education Foundation(Grant No.rczx0800)the K C Wong Magna Fund in Ningbo University
文摘Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer.However,mapping the distribution of pinned spins is challenging.In this work,we directly image the reverse domain nucleation and domain wall movement process in the exchange biased Co Fe B/Ir Mn bilayers by Lorentz transmission electron microscopy.From the in-situ experiments,we obtain the distribution mapping of the pinning strength,showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer.Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.10504019)the Shanghai Leading Academic Discipline Program (Grant No.T0104)the Science Foundation of Shanghai Municipal Commission of Education(Grant No.05AZ10)
文摘Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and perpendicular to the applied field. At low temperatures, coercivity Hc oc (tFM)^-n, n = 1.5 and 1.38 for x = 0.2 and 0.4, respectively, in agreement with the random field model. At room temperature, the coercivity is nearly proportional to the inverse FM layer thickness. In addition to the exchange field and the coercivity, the characteristic of the magnetization reversal mechanism was found to change with temperature. At temperatures below 180 K, magnetization reversal process along the unidirectional axis is accompanied only by nucleation and pinning of domain wall while magnetization rotation is also involved at high temperatures.
基金Project supported by the National Basic Resea.rch Program of China (Grant Nos. 2009CB929201, 2010CB934202, and 2011CB921801) and the National Natural Science Foundation of China (Grant Nos. 50931006, 11034004, and 51021061).
文摘The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM). Owing to the significant modification of the energy surface in remanent state by slight misorientation from (111) plane and a uniaxial magnetic anisotropy, the azimuthal angular dependence of in-plane resonance field shows a six-fold symmetry with a weak uniaxial contribution, while the remanence of hysteresis loops displays a two-fold one. The competition between the first and second magnetoerystalline anisotropies may result in the switching of in-plane easy axis of the system. Combining the FMR and VSM measurements, the magnetization reversal mechanism has also been determined.
基金the National Natural Science Foundation of China(Grant Nos.10974170 and 11104239)the Natural Science Foundation of Jiangsu Province,China(Grant No.09KJB140011)
文摘In an exchange-bias system, the barriers with intrinsic potential energy may be asymmetric due to unidirectional anisotropy. Based on the Stoner–Wohlfarth model, we show that the asymmetric barriers may lead to four kinds of dynamical process underlying the hysteresis-loop measurement. These kinds of dynamical processes are different in a topology-like property, which can be controlled by the orientation of the external field. In our study, a new analysis approach has been proposed to reveal the dynamical behaviors of magnetization reversal. With this approach, coercivity, exchange-bias field, and asymmetry of hysteresis loops can be quantitatively obtained.
基金supported by the National Natural Science Foundation of China(Grant No.11274236)the Deutsche Forschungsgemeinschaft via SFB 689
文摘We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.
文摘The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz-Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274033,11474015,and 61227902)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20131102130005)the Beijing Key Discipline Foundation of Condensed Matter Physics
文摘The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an "l-jump" process near the easy axis, or a "2-jump" process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China(Grant No.52271238)the Liaoning Revitalization Talents Program(Grant No.XLYC2002075)+1 种基金the Research Funds for the Central University(Grant Nos.N2202004,and N2102012)funding from the Alexander von Humboldt Foundation(Grant No.CHN 1225715 HFST-P).
文摘Realization of a magnetization reversal by an external electric field is vital for developing ultra-low-power spintronic devices.In this report,starting from energy band engineering,a general design principle is proposed for achieving electrical manipulation of a nonvolatile 180°magnetization reversal.A half semiconductor(HSC)and a bipolar magnetic semiconductor(BMS)are selected as the model of magnetic layers,whose conduction-band minimum and valence-band maximum are in the same and opposite spin states,respectively.Based on the analysis of virtual hopping and tight-binding models,the interlayer coupling of HSC/insulator/BMS devices is successfully tuned between ferromagnetic and antiferromagnetic interactions by varying electric field directions.Moreover,the interlayer coupling nearly disappears after removing the electric field,proving the nonvolatile magnetization reversal.Using first-principles calculations,the feasibility of present design strategy is further confirmed by a representative device with the structure of CrBr3/h-BN/2H-VSe_(2).This design guideline and physical phenomena may open an avenue to explore magnetoelectric coupling mechanisms and develop next-generation spintronic devices.
基金supported by the National High Technology Research and Development Plan (863 Plan, 2011AA03A403)
文摘The effect of Zr content on exchange coupling and magnetization reversal of the Ndl2.3Fe81.7_xZrxB6 (x=0-3.0) ribbons was systematically investigated. Interaction domains were imaged by magnetic force microscopy (MFM). The strength of interactions determined by Wohlfarth's analysis increased first with Zr content x increasing, reached the maximum value at x=l.5, and then decreased with x further increasing. Initial magnetization curves and dependence of coercivity and remanence on applied magnetic field showed that the mechanism of coercivity in all samples was mainly of exchange coupling pinning type, which was enhanced with x increasing. It was found by three-dimensional atom probe (3DAP) that Zr atoms did not partition into the Nd2Fe14B hard magnetic phase, but significantly enriched at the interfacial region.
基金supported by the Natural Science Foundation of Zhejiang Province(LQ15E010005LR15E010001)+3 种基金National Natural Science Foundation of China(510010926137902751371163 and 51301158)the National Public Interest Research Special Fund(201210107)
文摘The effect of Nb addition on the microstructure and magnetic properties of nanocrystaUine Sm(CobaiNbxZr0.02)7 permanent magnet were investigated, The magnetization reversal behavior for ball milled Sm(CobaiNbxZr0.02)7 samples with high coercivity was investigated by analyzing hysteresis curves and recoil loops of demagnetization curves. Nb addition proved to result in relevant improvement in the magnetic properties, especially in the coercivity He. It was shown that the magnetic properties of Sm(CobalNbx- Zr0.02)7 nanocrystalline magnets were improved by an additional 0.06 at.% Nb. In particular, Hc was improved from 602 to 786 kA/m at room temperature. The maximum value of the integrated recoil loops area for 0.06 at.% Nb-doped samples of 1.81 kJ/m3 was much lower than that of the Nb-free sample, which could be explained by a smaller recoverable portion of the magnetization remaining in the Nb-doped sample when the applied field was below the coercivity Hc. The nucleation field Hn for irreversible magnetization reversal of the magnetically hard phase were calculated by analyzed in terms of the△Mirrev-H curve and the Kondorsky model.
基金Foundation item: Project supported by Project of Zhejiang Province Innovative Research Team (2010R50016), Zhejiang Provincial Natural Science Foundation (Y6100640), National Natural Science Foundation of China (51001092, 51271172) and National Public Profession Sci- entific Research (201210107)
文摘Effect of thermal annealing on the magnetization reversal behavior of α-Fe/Nd2Fe14B alloys was investigated. A drastic in- crease of the remanence Mr from 0.67 up to 0.87 T and remanence ratio Mr/Ms from 0.66 up to 0.76, respectively, was observed in the α-Fe/NdEFel413 alloys annealed at 610 ℃ as compared with the as-quenched sample. Whereas the further annealing at 680 ℃ resulted in a strong increase of the corecivity Hc as high as 491 kA/m but a slight decrease in Mr. The analysis result of the magnetization re- versal behavior showed that the maximum value of the integrated recoil loop area about 1.58 kJ/m3 was obtained in the α-Fe/Nd2Fe14B alloys at the annealing temperature of 610℃, significantly lower than other annealed samples. This indicated a sig- nificant advantage for the application of this material as permanent magnets in electrical machines and generators due to a low energy loss.