In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous p...In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.展开更多
Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roas...Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roasting-magnetic separation process is a promising approach for the processing of oolitic hematite ore from western Hubei Province.展开更多
The difference of physicochemical properties among minerals in Baotou rare earth tailings is not significant,which leads to a great difficulty in separation of minerals.In this article,the process of magnetizing roast...The difference of physicochemical properties among minerals in Baotou rare earth tailings is not significant,which leads to a great difficulty in separation of minerals.In this article,the process of magnetizing roast and low-intensity magnetic separation was used to recover iron.Effect of calcination temperature,holding time and carbon/oxygen ratio on roasting efficiency was investigated.The parameters evaluating magnetizing roast efficiency and theoretical value were determined.X-ray diffraction(XRD)analysis was used to investigate the conversion of Fe phase after roasting.The results show that the best magnetizing roast conditions are calcination temperature of 650℃,holding time of 2.5 h,and carbon/oxygen molar ratio of 3.85.The best magnetization rate is 2.36,which is close to the theoretical value of 2.33.Based on experiments of low-intensity magnetic separation under different intensities,the best current intensity is 2.0 A to obtain the best separation results.Under the best condition,the concentrate grade of iron is 45.45% and the recovery of iron is 68.36%.Most of rare earth,fluorine,and phosphorus are enriched in the magnetic separation tailings.The XRD analysis shows that Fe exists in Fe2O3 before roasting and exists in Fe3O4after roasting.展开更多
A large number of studies have shown that oolitic hematite is an iron ore that is extremely difficult to utilize because of its fine disseminated particle size, high harmful impurity content and oolitic structure.To r...A large number of studies have shown that oolitic hematite is an iron ore that is extremely difficult to utilize because of its fine disseminated particle size, high harmful impurity content and oolitic structure.To recover iron from oolitic hematite, we developed a novel multistage dynamic magnetizing roasting technology. Compared with traditional magnetizing roasting technologies, this novel technology has the following advantages: firstly, the oolitic hematite is dynamically reduced in a multi-stage roasting furnace, which shortens the reduction time and avoids ringing and over-reduction;secondly, the novel dynamic magnetizing roasting technology has strong raw material adaptability, and the size range of raw materials can be as wide as 0–15 mm;thirdly, the roasting furnace adopts a preheating-heating process, and the low-calorific value blast furnace gas can be used as the fuel and reductant, which greatly reduces the cost. The actual industrial production data showed that the energy consumption in the roasting process can be less than 35 kg of standard coal per ton of raw ore. The iron grade of the concentrate and iron recovery reached 65% and 90%, respectively.展开更多
Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and ...Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and composition of rare-earth tailings were investigated. The results show that roast conditions with the temperature of 650℃, carbon to oxygen ratio of 3.85, and holding time of 2.5 h are in favor of reduction of Fe_2O_3 to Fe_3O_4 when the roasted rare-earth tailings is cooled along with furnace. Under these roast conditions, magnetic susceptibility of rare-earth tailings is 2.36 that is very close to theoretical value(2.33). However, magnetic separation results of iron in rare-earth tailings cooled along with furnace are not satisfactory. Through comparing magnetic separation results of iron in rare-earth tailings cooled by different ways, it is found that water cooling is more favored of magnetic separation of iron in the roasted rare-earth tailings than furnace cooling and air cooling. Grade and recovery of iron in concentrate from rare-earth tailings cooled by water are 45.00%-49.00% and 65.00%-77.50%, respectively.展开更多
The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic li...The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic line of force and some valuable results of the optimal magnetizing field are given.The theoretical cal-culations are in good agreement with the experimental results.展开更多
The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of ...The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of inrush current are analyzed firstly. Then the difference of two kinds of phase compensation methods, from star to delta and from delta to star connection, is compared. The second harmonic ratio of symmetric inrush is analyzed specially. Using inrush waveform of a real transformer, second harmonic ratio of phase inrush and that of differential current under two kinds of phase compensation methods are calculated respectively. Furthermore, based on the calculation results, the effect of two kinds of phase compensation methods on the inrush current identification is proved. The analysis and calculation results show that the second harmonic ratio of symmetric inrush caused by phase compensation method, from star to delta, is not low. Moreover, the split-phase blocking scheme should not be adopted for differential protection of from delta to star compensation. Using the phase current without compensation to calculate the ratio of second harmonic is inadvisable too.展开更多
This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be. obtained, the efficient design of magnetizer which produce desired magne...This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be. obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.展开更多
Magnetizing roasting via a fluidized bed,which was recognized as an efficient method for beneficiation of low-grade iron ores,has attracted much attention in China recently due to the fluctuation of the international ...Magnetizing roasting via a fluidized bed,which was recognized as an efficient method for beneficiation of low-grade iron ores,has attracted much attention in China recently due to the fluctuation of the international iron ore market.In order to examine the effects of magnetic properties on the separability and to optimize the operating parameters,magnetic susceptibility and coercivity of a low-grade hematite after magnetizing reduction and reoxidation under different conditions were investigated.It was found that the magnetic susceptibility of roasted ore increased with reduction degree and particle diameter to different degrees.The magnetite was re-oxidized to maghemite when the temperature was below 400℃,and the magnetic susceptibility decreased slightly.The recovery efficiency decreased notably with the particle size for very fine grains although no significant change was found in magnetic susceptibility.The coercivity and remanence of roasted ores decreased with increasing roasting temperature.The scanning electron microscope(SEM) study showed that more cracks were produced by the reoxidation of reduced ores,which could possibly favor the intergranular fracturing and the liberation for further treatment.展开更多
The expression of critical size of ferromagnetic microcrystal in an external magnetic field with an intensity of H is derived by means of comparing energies of domain structure states.The ferromagnetic microcrystal he...The expression of critical size of ferromagnetic microcrystal in an external magnetic field with an intensity of H is derived by means of comparing energies of domain structure states.The ferromagnetic microcrystal here means an ferromagnetic single crystal with the size which is smaller than L0, and L0 is the critical value of the size of single-domain particles at the external magnetic field intensity H =0.Also, the coercive strength H(Ls) relating to the size of microcrystal Ls is given and quantitatively evaluated with the material SmCo5 as an instance.It is thus concluded that if L0 > Ls > LC, the antimagnetization of microcrystal will be subjected to a multi-domain process just like the particles of a size greater than L0, only if Ls < LC, the anti-magnetizaton will be carried on in accordance with the Stoner-Wohlforth mechanism( LC is the maximum size of microcrystal with MHcth ).It is suggested that the material RECo5 is available to make an advanced magnet with MHC = 2 K/Mc.展开更多
Magnetic water treatment is considered as one of many techniques used worldwide that affects plant growth and development.This study examines whether there are beneficial effects of magnetic treatment of irrigation wa...Magnetic water treatment is considered as one of many techniques used worldwide that affects plant growth and development.This study examines whether there are beneficial effects of magnetic treatment of irrigation water on yield and water productivity as well as water saving.Three experiments were performed involving three crops(eggplant,faba beans and tomato)with different salinity tolerance thresholds ECw 0.7,1.1 and 1.7 dS/m,respectively.Two types of irrigation water were applied magnetically treated and non-magnetically treated.The experiments were carried out at Wadi EL Natroon station of Water Management Research Institute,El-Behira Governorate,Egypt during two sequentially winter seasons of 2015/2016 and 2016/2017 in a complete randomized design analysis with four replicates.There was a decrease of pH of the soil irrigated with magnetically treated water(MTW)compared with the non-MTW.The pH reached neutral values in some locations,especially the area cultivated with the faba beans(pH between 7.05 and 7.08).Results showed significant increases of water productivity for the MTW compared with non-MTW equal to 1.65,1.88 and 1.78 for eggplant,faba beans and tomato,respectively.It was also observed that the MTW affected the amounts of irrigation water added to different crops during its growing period.The percentages of water savings were 11%,13.5%and 14.2%for eggplant,faba beans and tomato,respectively.As a result the net return increased by 1.97,3.0 and 2.45 for the three crops,respectively.展开更多
In this paper we demonstrate, that shearing is changing only one parameter of the static loop. By using the shearing factor Ns, linked to the widely used, demagnetization coefficient ND, we show the one parameter link...In this paper we demonstrate, that shearing is changing only one parameter of the static loop. By using the shearing factor Ns, linked to the widely used, demagnetization coefficient ND, we show the one parameter link between the static unsheared and that of the sheared saturation loop, obtained by a non-toroidal, open circuit hysteresis measurement. The paper illustrates the simple relation between open circuit loop data and measured real static saturation data. The proposed theory is illustrated by using the hyperbolic model. For experimental illustration, tests results are used, which were carried out on two closed and open toroidal samples, made of NO Fe-Si electrical steel sheet, mimicking the demagnetization effect of the open circuit VSM measurement. These are both theoretical and experimental demonstrations, that shearing only changes the inclination of the static hysteresis loop. These test results, presented here, agree very well with the calculated results, based on the proposed method.展开更多
Using THz emission spectroscopy,we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale.We demonstrate that THz radiation changes its polarity with reversal of the ma...Using THz emission spectroscopy,we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale.We demonstrate that THz radiation changes its polarity with reversal of the magnetization applied by the external magnetic field.In addition,it is found that the sign of THz polarity excited from different sides is defined by the thickness of the Fe layer and Fe/dielectric interface.Based on the thickness and symmetry dependences of THz emission,we experimentally distinguish between the two major contributions:ultrafast demagnetization and the anomalous Hall effect.Our experimental results not only enrich understanding of THz electromagnetic generation induced by femtosecond laser pulses but also provide a practical way to access laser-induced ultrafast spin dynamics in magnetic structures.展开更多
BACKGROUND Li-Fraumeni syndrome(LFS)is a rare autosomal dominant cancer-predisposing syndrome,which can manifest as a polymorphic spectrum of malignancies.LFS is associated with an early onset in life,with the majorit...BACKGROUND Li-Fraumeni syndrome(LFS)is a rare autosomal dominant cancer-predisposing syndrome,which can manifest as a polymorphic spectrum of malignancies.LFS is associated with an early onset in life,with the majority of cases occurring prior to the age of 46.Notwithstanding the infrequency of primary cardiac tumors,it behooves clinicians to remain vigilant in considering the differential diagnosis of such tumors in LFS patients who present with a cardiac mass.This is due to the markedly elevated risk for malignancy in this particular population,far surpassing that of the general populace.CASE SUMMARY Herein,we present a case of a 30-year-old female with LFS who was found to have a tricuspid valve leaflet mass.CONCLUSION This case exemplifies valuable learning points in the diagnostic approach for this exceptionally rare patient population.展开更多
Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is no...Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.展开更多
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t...Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field.展开更多
BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for indivi...BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.展开更多
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were...Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ...Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells.展开更多
文摘In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.
文摘Magnetizing roasting of oolitic hematite ore from western Hubei Province was investigated.The mechanism for reduction roasting of oolitic hematite ore was discussed and analyzed.It is found that flash magnetizing roasting-magnetic separation process is a promising approach for the processing of oolitic hematite ore from western Hubei Province.
基金supported by the Major State Basic Research Development Program of China (No.2012CBA01205)College Foundation of Ministry of Education of China (No.N110502002)National Natural Science Founda- tion of China (Nos. 50934004 and 51274061)
文摘The difference of physicochemical properties among minerals in Baotou rare earth tailings is not significant,which leads to a great difficulty in separation of minerals.In this article,the process of magnetizing roast and low-intensity magnetic separation was used to recover iron.Effect of calcination temperature,holding time and carbon/oxygen ratio on roasting efficiency was investigated.The parameters evaluating magnetizing roast efficiency and theoretical value were determined.X-ray diffraction(XRD)analysis was used to investigate the conversion of Fe phase after roasting.The results show that the best magnetizing roast conditions are calcination temperature of 650℃,holding time of 2.5 h,and carbon/oxygen molar ratio of 3.85.The best magnetization rate is 2.36,which is close to the theoretical value of 2.33.Based on experiments of low-intensity magnetic separation under different intensities,the best current intensity is 2.0 A to obtain the best separation results.Under the best condition,the concentrate grade of iron is 45.45% and the recovery of iron is 68.36%.Most of rare earth,fluorine,and phosphorus are enriched in the magnetic separation tailings.The XRD analysis shows that Fe exists in Fe2O3 before roasting and exists in Fe3O4after roasting.
基金National Natural Science Foundation of China (No. 51974204)。
文摘A large number of studies have shown that oolitic hematite is an iron ore that is extremely difficult to utilize because of its fine disseminated particle size, high harmful impurity content and oolitic structure.To recover iron from oolitic hematite, we developed a novel multistage dynamic magnetizing roasting technology. Compared with traditional magnetizing roasting technologies, this novel technology has the following advantages: firstly, the oolitic hematite is dynamically reduced in a multi-stage roasting furnace, which shortens the reduction time and avoids ringing and over-reduction;secondly, the novel dynamic magnetizing roasting technology has strong raw material adaptability, and the size range of raw materials can be as wide as 0–15 mm;thirdly, the roasting furnace adopts a preheating-heating process, and the low-calorific value blast furnace gas can be used as the fuel and reductant, which greatly reduces the cost. The actual industrial production data showed that the energy consumption in the roasting process can be less than 35 kg of standard coal per ton of raw ore. The iron grade of the concentrate and iron recovery reached 65% and 90%, respectively.
基金Project(2012CBA01205)supported by National Basic Research Program of ChinaProjects(50934004,51274061)supported by the National Natural Science Foundation of ChinaProject(N110502002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Magnetic separation of iron in rare-earth tailings was achieved by magnetizing roast process with coal as reductant. Effects of the temperature, carbon to oxygen ratio, and cooling type on magnetic susceptibility and composition of rare-earth tailings were investigated. The results show that roast conditions with the temperature of 650℃, carbon to oxygen ratio of 3.85, and holding time of 2.5 h are in favor of reduction of Fe_2O_3 to Fe_3O_4 when the roasted rare-earth tailings is cooled along with furnace. Under these roast conditions, magnetic susceptibility of rare-earth tailings is 2.36 that is very close to theoretical value(2.33). However, magnetic separation results of iron in rare-earth tailings cooled along with furnace are not satisfactory. Through comparing magnetic separation results of iron in rare-earth tailings cooled by different ways, it is found that water cooling is more favored of magnetic separation of iron in the roasted rare-earth tailings than furnace cooling and air cooling. Grade and recovery of iron in concentrate from rare-earth tailings cooled by water are 45.00%-49.00% and 65.00%-77.50%, respectively.
文摘The optimal magnetizing fields of the variable polarization effects of ferrite are studied by using thecoupling-wave(cw)theory,vaiational principle and optimization techniques.Several kinds of shapes of themagnetic line of force and some valuable results of the optimal magnetizing field are given.The theoretical cal-culations are in good agreement with the experimental results.
文摘The effect of different phase compensation methods on second harmonic ratio of magnetizing inrush is investigated. The flux linkage expression of switching on an unload transformer is deduced and influence factors of inrush current are analyzed firstly. Then the difference of two kinds of phase compensation methods, from star to delta and from delta to star connection, is compared. The second harmonic ratio of symmetric inrush is analyzed specially. Using inrush waveform of a real transformer, second harmonic ratio of phase inrush and that of differential current under two kinds of phase compensation methods are calculated respectively. Furthermore, based on the calculation results, the effect of two kinds of phase compensation methods on the inrush current identification is proved. The analysis and calculation results show that the second harmonic ratio of symmetric inrush caused by phase compensation method, from star to delta, is not low. Moreover, the split-phase blocking scheme should not be adopted for differential protection of from delta to star compensation. Using the phase current without compensation to calculate the ratio of second harmonic is inadvisable too.
文摘This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be. obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.
文摘Magnetizing roasting via a fluidized bed,which was recognized as an efficient method for beneficiation of low-grade iron ores,has attracted much attention in China recently due to the fluctuation of the international iron ore market.In order to examine the effects of magnetic properties on the separability and to optimize the operating parameters,magnetic susceptibility and coercivity of a low-grade hematite after magnetizing reduction and reoxidation under different conditions were investigated.It was found that the magnetic susceptibility of roasted ore increased with reduction degree and particle diameter to different degrees.The magnetite was re-oxidized to maghemite when the temperature was below 400℃,and the magnetic susceptibility decreased slightly.The recovery efficiency decreased notably with the particle size for very fine grains although no significant change was found in magnetic susceptibility.The coercivity and remanence of roasted ores decreased with increasing roasting temperature.The scanning electron microscope(SEM) study showed that more cracks were produced by the reoxidation of reduced ores,which could possibly favor the intergranular fracturing and the liberation for further treatment.
文摘The expression of critical size of ferromagnetic microcrystal in an external magnetic field with an intensity of H is derived by means of comparing energies of domain structure states.The ferromagnetic microcrystal here means an ferromagnetic single crystal with the size which is smaller than L0, and L0 is the critical value of the size of single-domain particles at the external magnetic field intensity H =0.Also, the coercive strength H(Ls) relating to the size of microcrystal Ls is given and quantitatively evaluated with the material SmCo5 as an instance.It is thus concluded that if L0 > Ls > LC, the antimagnetization of microcrystal will be subjected to a multi-domain process just like the particles of a size greater than L0, only if Ls < LC, the anti-magnetizaton will be carried on in accordance with the Stoner-Wohlforth mechanism( LC is the maximum size of microcrystal with MHcth ).It is suggested that the material RECo5 is available to make an advanced magnet with MHC = 2 K/Mc.
文摘Magnetic water treatment is considered as one of many techniques used worldwide that affects plant growth and development.This study examines whether there are beneficial effects of magnetic treatment of irrigation water on yield and water productivity as well as water saving.Three experiments were performed involving three crops(eggplant,faba beans and tomato)with different salinity tolerance thresholds ECw 0.7,1.1 and 1.7 dS/m,respectively.Two types of irrigation water were applied magnetically treated and non-magnetically treated.The experiments were carried out at Wadi EL Natroon station of Water Management Research Institute,El-Behira Governorate,Egypt during two sequentially winter seasons of 2015/2016 and 2016/2017 in a complete randomized design analysis with four replicates.There was a decrease of pH of the soil irrigated with magnetically treated water(MTW)compared with the non-MTW.The pH reached neutral values in some locations,especially the area cultivated with the faba beans(pH between 7.05 and 7.08).Results showed significant increases of water productivity for the MTW compared with non-MTW equal to 1.65,1.88 and 1.78 for eggplant,faba beans and tomato,respectively.It was also observed that the MTW affected the amounts of irrigation water added to different crops during its growing period.The percentages of water savings were 11%,13.5%and 14.2%for eggplant,faba beans and tomato,respectively.As a result the net return increased by 1.97,3.0 and 2.45 for the three crops,respectively.
文摘In this paper we demonstrate, that shearing is changing only one parameter of the static loop. By using the shearing factor Ns, linked to the widely used, demagnetization coefficient ND, we show the one parameter link between the static unsheared and that of the sheared saturation loop, obtained by a non-toroidal, open circuit hysteresis measurement. The paper illustrates the simple relation between open circuit loop data and measured real static saturation data. The proposed theory is illustrated by using the hyperbolic model. For experimental illustration, tests results are used, which were carried out on two closed and open toroidal samples, made of NO Fe-Si electrical steel sheet, mimicking the demagnetization effect of the open circuit VSM measurement. These are both theoretical and experimental demonstrations, that shearing only changes the inclination of the static hysteresis loop. These test results, presented here, agree very well with the calculated results, based on the proposed method.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.61988102,62322115,61975110,and 62335012)+3 种基金the 111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant No.22JC1400200)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Using THz emission spectroscopy,we investigate the elementary spin dynamics in ferromagnetic single-layer Fe on a sub-picosecond timescale.We demonstrate that THz radiation changes its polarity with reversal of the magnetization applied by the external magnetic field.In addition,it is found that the sign of THz polarity excited from different sides is defined by the thickness of the Fe layer and Fe/dielectric interface.Based on the thickness and symmetry dependences of THz emission,we experimentally distinguish between the two major contributions:ultrafast demagnetization and the anomalous Hall effect.Our experimental results not only enrich understanding of THz electromagnetic generation induced by femtosecond laser pulses but also provide a practical way to access laser-induced ultrafast spin dynamics in magnetic structures.
文摘BACKGROUND Li-Fraumeni syndrome(LFS)is a rare autosomal dominant cancer-predisposing syndrome,which can manifest as a polymorphic spectrum of malignancies.LFS is associated with an early onset in life,with the majority of cases occurring prior to the age of 46.Notwithstanding the infrequency of primary cardiac tumors,it behooves clinicians to remain vigilant in considering the differential diagnosis of such tumors in LFS patients who present with a cardiac mass.This is due to the markedly elevated risk for malignancy in this particular population,far surpassing that of the general populace.CASE SUMMARY Herein,we present a case of a 30-year-old female with LFS who was found to have a tricuspid valve leaflet mass.CONCLUSION This case exemplifies valuable learning points in the diagnostic approach for this exceptionally rare patient population.
基金supported by China Scholarship Council(202208210093,to RJ)。
文摘Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly.Although at first it was considered innocuous,small vessel disease is nowadays regarded as one of the major vascular causes of dementia.Radiological signs of small vessel disease include small subcortical infarcts,white matter magnetic resonance imaging hyperintensities,lacunes,enlarged perivascular spaces,cerebral microbleeds,and brain atrophy;however,great heterogeneity in clinical symptoms is observed in small vessel disease patients.The pathophysiology of these lesions has been linked to multiple processes,such as hypoperfusion,defective cerebrovascular reactivity,and blood-brain barrier dysfunction.Notably,studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease.Therefore,the purpose of this review is to provide a new foundation in the study of small vessel disease pathology.First,we discuss the main structural domains and functions of the blood-brain barrier.Secondly,we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease.Finally,we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
基金the scope of the CICS-UBI projects UIDP/Multi/00709/2019,UIDB/Multi/00709/2019,UIDP/00709/2020,UIDB/00709/2020,financed by national funds through the Portuguese Foundation for Science and Technology/MCTESby funds to the PPBI-Portuguese Platform of Bio Imaging through the Project POCI-01-0145-FEDER-022122(to GB,MVP,NP)supported by a grant from the Portuguese Foundation for Science and Technology/MCTES(2021.07854.BD)(to IS)。
文摘Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field.
文摘BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.
基金supported by grants from the National Key R&D Program of China(2019YFC1606701)。
文摘Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金supported by the National Natural Science Foundation of China,Nos.81672261(to XH),81972151(to HZ),82372568(to JL)the Natural Science Foundation of Guangdong Province,Nos.2019A1515011106(to HZ),2023A1515030080(to JL)。
文摘Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells.