期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Anisotropic NdFeB Magnet Fabricated by Single Stroke Hot Deformation 被引量:11
1
作者 Y.Li (Chungnam National University, Taejon, Korea) Y.B.Kim (Korea Research Institute of Standards and Science, Taejon, Korea) M.J.Kim, M.S.Song, J.H.Yang, T.K.Kim and C.O.Kim (Chungnam National University, Taejon, Korea) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期129-130,共2页
The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabrica... The general hot deformation process consists of two steps, hot pressing and die-upsetting in order to obtain the anisotropic NdFeB magnet. This is the first report that the high anisotropy NdFeB magnets can be fabricated by single stroke hot deforming the isotropic magnet. The magnetic properties of those materials are: coercivity iHc ~11 kOe, remanence Br ~12 kG, and the maximum energy product (BH)max ~28 MG.Oe. 展开更多
关键词 NDFEB Anisotropic NdFeB Magnet Fabricated by Single Stroke Hot deformation
下载PDF
Grain boundary construction and properties enhancement for hot deformed(Ce,La,Y)-Fe-B magnet by a two-step diffusion process 被引量:1
2
作者 Xuefeng Liao Weiwei Zeng +10 位作者 Lizhong Zhao Qing Zhou Jiayi He Wei Li Xiangyi Liu Hongya Yu Xiaolian Liu Haoyang Jia Jean-Marc Greneche Xuefeng Zhang Zhongwu Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期253-261,共9页
The rare earth-iron-boron magnets based on high abundance rare earths(REs)show potential for costeffective permanent magnets but their hard magnetic properties have to be greatly improved.The grain boundary diffusion ... The rare earth-iron-boron magnets based on high abundance rare earths(REs)show potential for costeffective permanent magnets but their hard magnetic properties have to be greatly improved.The grain boundary diffusion process(GBDP)is known as an effective way to improve the coercivity of Nd-Fe-B magnets,however,the conventional diffusion method faces a challenge for Ce-based magnets since there is no enough continuous GB layer as the diffusion channel.Here,a two-step(Nd-Cu doping followed by Nd-Cu diffusion)GBDP was introduced for hot deformed(Ce,La,Y)-Fe-B magnet,and the excellent magnetic properties ofμ0Hc=0.63 T,μ0Mr=0.68 T,and(BH)max=72.4 kJ/m^(3)were achieved.The Nd-Cu doping helps the formation of RE-rich GB layer,and then it acts as the diffusion channel for increasing the ef-ficiency of the subsequent Nd-Cu diffusion and results in the increased volume fraction of continuously distributed GB phase,whose paramagnetism was verified by 57Fe Mössbauer spectrometry.Those paramagnetic GB phases help to form the discontinuous domain walls,as observed by Lorentz transmission electron microscopy,and break the magnetic exchange coupling of RE2Fe14B grains.It thus contributes to the coercivity enhancement of the hot deformed magnet with two-step diffusion,which is further proved by micromagnetic simulation.This study proposes a potential technique to prepare anisotropic hot deformed(Ce,La,Y)-Fe-B magnet with high cost-performance. 展开更多
关键词 High abundance rare earth Hot deformed RE-Fe-B magnets Grain boundary diffusion process Magnetic properties Grain boundary phase
原文传递
Magnetic moments and g-factors in odd-A Ho isotopes
3
作者 E.Tabar H.Yakut +2 位作者 A.A.Kuliev H.Quliyev G.Hosgor 《Chinese Physics C》 SCIE CAS CSCD 2017年第7期52-60,共9页
The ground-state magnetic moment, g K factor and quenching spin gyromagnetic ratio have been calculated using the microscopic method based on the Quasiparticle Phonon Nuclear Model(QPNM) for ^155-169 Ho nuclei for t... The ground-state magnetic moment, g K factor and quenching spin gyromagnetic ratio have been calculated using the microscopic method based on the Quasiparticle Phonon Nuclear Model(QPNM) for ^155-169 Ho nuclei for the first time. It is shown that the residual spin-spin interactions are responsible for the core polarization,and because of the core polarization the spin gyromagnetic factors are quenched. By considering the core polarization effects, a satisfactory agreement is obtained for the computed ground state g K factor, which gives an intrinsic contribution to the magnetic moments. In order to assess the collective contribution to the magnetic moments, the rotational gyromagnetic factors g R have been also calculated within the cranking approximation using the single particle wave function of the axially symmetric Woods-Saxon potential. For the ground-state magnetic moments of odd-proton ^155-165 Ho nuclei, a good description of the experimental data is obtained with an accuracy of 0.01–0.1μN. From systematic trends, the quenching spin gyromagnetic factor, g K factor and magnetic moment have also been theoretically predicted for167,169 Ho where there is no existing experimental data. 展开更多
关键词 deformed odd-A Ho isotopes magnetic moment magnetic g-factors core-polarization QRPA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部