期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Investigation of magnetization reversal and domain structures in perpendicular synthetic antiferromagnets by first-order reversal curves and magneto-optical Kerr effect
1
作者 王向谦 李佳楠 +2 位作者 何开宙 谢明玲 朱旭鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期580-584,共5页
Perpendicular synthetic-antiferromagnet(p-SAF) has broad applications in spin-transfer-torque magnetic random access memory and magnetic sensors. In this study, the p-SAF films consisting of (Co/Ni)3]/Ir(tIr)/[(Ni/Co)... Perpendicular synthetic-antiferromagnet(p-SAF) has broad applications in spin-transfer-torque magnetic random access memory and magnetic sensors. In this study, the p-SAF films consisting of (Co/Ni)3]/Ir(tIr)/[(Ni/Co)3are fabricated by magnetron sputtering technology. We study the domain structure and switching field distribution in p-SAF by changing the thickness of the infrared space layer. The strongest exchange coupling field(Hex) is observed when the thickness of Ir layer(tIr) is 0.7 nm and becoming weak according to the Ruderman–Kittel–Kasuya–Yosida-type coupling at 1.05 nm,2.1 nm, 4.55 nm, and 4.9 nm in sequence. Furthermore, the domain switching process between the upper Co/Ni stack and the bottom Co/Ni stack is different because of the antiferromagnet coupling. Compared with ferromagnet coupling films, the antiferromagnet samples possess three irreversible reversal regions in the first-order reversal curve distribution.With tIrincreasing, these irreversible reversal regions become denser and smaller. The results from this study will help us understand the details of the magnetization reversal process in the p-SAF. 展开更多
关键词 perpendicular synthetic antiferromagnet first-order reversal curves magnetization reversal pro-cess DOMAIN
下载PDF
Coercivity mechanism of La-Nd-Fe-B films with Y spacer layer
2
作者 马俊 赵晓天 +4 位作者 刘伟 李阳 刘龙 赵新国 张志东 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期138-143,共6页
The effect of the Y spacer layer on the phase composition,coercivity,and magnetization reversal processes of La-Nd-Fe-B films has been investigated.The addition of a 10 nm Y spacer layer increases the coercivity of th... The effect of the Y spacer layer on the phase composition,coercivity,and magnetization reversal processes of La-Nd-Fe-B films has been investigated.The addition of a 10 nm Y spacer layer increases the coercivity of the film to 1.36 T at 300 K and remains 0.938 T at 380 K.As the thickness of the Y spacer layer increases,Y participates in the formation of the main phase in the film,and further regulates the formation of La-B phases.The results of the first-order reversal curve(FORC)and micromagnetic fitting show that the coercivity of all the films is dominated by nucleation mechanism.The c-axis preferred orientation,good magnetic microstructure parameters and the largest dipole interaction enhance the coercivity.Therefore,the introduction of the Y spacer layer can be an effective way to improve the coercivity of La-Nd-Fe-B film over a wide temperature range of 150 K-380 K. 展开更多
关键词 La-Nd-(Y)-Fe-B films magnetization reversal mechanisms COERCIVITY MULTILAYERS
下载PDF
The B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics and its effect on magnetic properties
3
作者 Li Hou Lei Shi +3 位作者 Liping Yang Yiqiang Liu Zhitao Li Lanxiang Meng 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期434-441,共8页
To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemi... To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications. 展开更多
关键词 RFe_(0.5)Cr_(0.5)O_(3)ceramics structural distortion B-site ordering magnetization reversal
下载PDF
Magnetoresistive behavior and magnetization reversal of NiFe/Cu/CoFe/IrMn spin valve GMRs in nanoscale 被引量:1
4
作者 Cong Yin Ze Jia +1 位作者 Wei-chao Ma Tian-ling Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期700-704,共5页
The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnet... The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnetic simulation methods. Based on the Landau-Lifshitz-Gilbert equation, a model with a special gridding was proposed to calculate the giant magnetoresistance ratio (MR) and investigate the magnetization reversal mode. The relationship between MR and the external magnetic field was obtained and analyzed. Studies into the variation of the magnetization distribution reveal that the magnetization reversal mode, that is, the jump variation mode for NiFe/Cu/CoFe/IrMn, depends greatly on the antiferromagnetic coupling behavior between the pinned layer and the antiferromagnetic layer. It is also found that the switching field is almost linear with the exchange coefficient. 展开更多
关键词 giant magnetoresistance (GMR) spin valves NANOSCALE magnetization reversal
下载PDF
Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM 被引量:1
5
作者 Ke Pei Wei-Xing Xia +5 位作者 Bao-Min Wang Xing-Cheng Wen Ping Sheng Jia-Ping Liu Xin-Cai Liu Run-Wei Li 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期465-471,共7页
Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due ... Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer.However,mapping the distribution of pinned spins is challenging.In this work,we directly image the reverse domain nucleation and domain wall movement process in the exchange biased Co Fe B/Ir Mn bilayers by Lorentz transmission electron microscopy.From the in-situ experiments,we obtain the distribution mapping of the pinning strength,showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer.Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems. 展开更多
关键词 exchange bias magnetization reversal process Lorentz transmission electron microscopy pinning effect distribution
下载PDF
Implementation procedure for the generalized moving Preisach model based on a first order reversal curve diagram 被引量:1
6
作者 HAN Yong ZHU Jie 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期355-360,共6页
First order reversal curves (FORC) of nanocomposite Nd2Fe14B/Fe3B magnetic materials were measured to attain a FORC diagram, which characterizes reversible magnetization, irreversible magnetization, and magnetic int... First order reversal curves (FORC) of nanocomposite Nd2Fe14B/Fe3B magnetic materials were measured to attain a FORC diagram, which characterizes reversible magnetization, irreversible magnetization, and magnetic interactions in a hysteresis system. Then, generalized mov- ing Preisach model (GMPM) was implemented based on the FORC diagram. Reversible and irreversible magnetizations shown in FORCs and a FORC diagram were used as an input of GMPM. Coupling interaction between reversible and irreversible magnetizations was added when calculating reversible magnetization. Meanwhile, irreversible magnetic moments' interaction was approximately represented by mean field interaction. The result shows that the simulated main curves mostly coincide with the experimental curves. 展开更多
关键词 FORC diagram Preisach model reversible magnetization irreversible magnetization magnetic interactions
下载PDF
Gate-Voltage-Induced Magnetization Reversal and Tunneling Anisotropic Magnetoresistance in a Single Molecular Magnet with Temperature Gradient
7
作者 李淑静 张玉颖 +1 位作者 徐卫平 聂一行 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期116-120,共5页
We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two el... We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR. 展开更多
关键词 of on is SMM Gate-Voltage-Induced Magnetization reversal and Tunneling Anisotropic Magnetoresistance in a Single Molecular Magnet with Temper in with
下载PDF
Magnetization reversal of ultrathin Fe film grown on Si(111) using iron silicide template
8
作者 何为 詹清峰 +3 位作者 王德勇 陈立军 孙阳 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3541-3544,共4页
Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigate... Ultrathin Fe films were epitaxially grown on Si(lll) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t 〈 6 ML (monolayers) exhibit perpen-dicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process. 展开更多
关键词 molecular beam epitaxy surface magnetism magnetization reversal Kerr effect
下载PDF
Statistical model of magnetization reversal in Nd-Fe-B sintered magnets
9
作者 WANG Huijie ZHU Minggang LI Wei ZHANG Xin 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期521-525,共5页
Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The mag... Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets. 展开更多
关键词 sintered Nd-Fe-B magnets mechanical properties magnetization reversal abnormal grain growth
下载PDF
Magnetization Reversal for Ni Nanowires Studied by Micromagnetic Simulations
10
作者 Nianmei Hen Guanghua Guo +2 位作者 Lamei Zhang Guangfu Zhang Wenbin Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期151-154,共4页
The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter... The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter of wire. For very thin wires, the reversal occurs by pseudo-coherent rotation. With increasing diameter, magnetization reversal takes place via different nucleation (the transverse domain wall and the vortex domain wall) and subsequent propagation. The reason of transition from the transverse domain wall to the vortex domain wall is given by analytical studies. With further increase of the diameter, the reversal nuclear domain wall becomes tundishoshaped form. As the diameter increases, the width of wall becomes larger. 展开更多
关键词 NANOWIRE MICROMAGNETICS Magnetization reversal mechanism
下载PDF
Thermally activated magnetization reversal in magnetic tunnel junctions
11
作者 周广宏 王寅岗 +2 位作者 祁先进 李子全 陈建康 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期790-794,共5页
In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization pro... In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlOx/CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants. 展开更多
关键词 magnetic tunnel junctions magnetization reversal thermal activation exchange cou~ pling
下载PDF
SIMULATION OF THE MAGNETIZATION REVERSAL PROCESS OF RECTANGLE-SHAPED NiFe FILM ELEMENTS UNDER AN ORTHOGONAL MAGNETIC FIELD
12
作者 W.L. Zhang R.J. Tang W.X. Zhang B. Peng H. C. Jiang H.W. Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期642-646,共5页
The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Diffe... The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements. 展开更多
关键词 NiFe film element MICROMAGNETICS aspect ratio magnetization reversal switching field
下载PDF
Topology-like dynamical behavior of magnetization reversal in exchange-bias systems
13
作者 苏垣昌 张丽娟 +2 位作者 杨鑫 潘靖 胡经国 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期503-506,共4页
In an exchange-bias system, the barriers with intrinsic potential energy may be asymmetric due to unidirectional anisotropy. Based on the Stoner–Wohlfarth model, we show that the asymmetric barriers may lead to four ... In an exchange-bias system, the barriers with intrinsic potential energy may be asymmetric due to unidirectional anisotropy. Based on the Stoner–Wohlfarth model, we show that the asymmetric barriers may lead to four kinds of dynamical process underlying the hysteresis-loop measurement. These kinds of dynamical processes are different in a topology-like property, which can be controlled by the orientation of the external field. In our study, a new analysis approach has been proposed to reveal the dynamical behaviors of magnetization reversal. With this approach, coercivity, exchange-bias field, and asymmetry of hysteresis loops can be quantitatively obtained. 展开更多
关键词 exchange-bias system intrinsic energy potential magnetization reversal
下载PDF
In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
14
作者 Jing Liu Caiyin You +3 位作者 Li Ma Yun Li Ling Ma Na Tian 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期511-515,共5页
High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/Mg... High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range. 展开更多
关键词 critical current density magnetization reversal perpendicular magnetization hybrid driving
下载PDF
Magnetization Reversal Process of Single Crystal a-Fe Containing a Nonmagnetic Particle
15
作者 李翼 徐贲 +3 位作者 胡深洋 李玉兰 李丘林 刘伟 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第6期155-158,共4页
The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz-Gilbert equation. The evolutions of the magnetic d... The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz-Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening. 展开更多
关键词 Magnetization reversal Process of Single Crystal a-Fe Containing a Nonmagnetic Particle DW FE
下载PDF
Temperature dependence of magnetization reversal mechanism in CoNi/CoO bilayers
16
作者 宋金涛 袁淑娟 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期562-565,共4页
Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and ... Exchange coupling and magfietization reversal mechanism in two series of CoxNil-x/CoO (30 nm) (x=0.2 and 0.4) bilayers are studied by vector magnetometer. Two components of magnetization are measured parallel and perpendicular to the applied field. At low temperatures, coercivity Hc oc (tFM)^-n, n = 1.5 and 1.38 for x = 0.2 and 0.4, respectively, in agreement with the random field model. At room temperature, the coercivity is nearly proportional to the inverse FM layer thickness. In addition to the exchange field and the coercivity, the characteristic of the magnetization reversal mechanism was found to change with temperature. At temperatures below 180 K, magnetization reversal process along the unidirectional axis is accompanied only by nucleation and pinning of domain wall while magnetization rotation is also involved at high temperatures. 展开更多
关键词 exchange coupling BILAYER magnetization reversal temperature dependence.
下载PDF
Magnetic anisotropy and magnetization reversal of ultrathin iron films with in-plane magnetization on Si(111) substrates
17
作者 刘郝亮 何为 +5 位作者 杜海峰 房亚鹏 吴琼 张向群 杨海涛 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期5-10,共6页
The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample mag... The magnetic anisotropy and magnetization reversal of single crystal Fe films with thickness of 45 monolayer (ML) grown on Si(111) have been investigated by ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM). Owing to the significant modification of the energy surface in remanent state by slight misorientation from (111) plane and a uniaxial magnetic anisotropy, the azimuthal angular dependence of in-plane resonance field shows a six-fold symmetry with a weak uniaxial contribution, while the remanence of hysteresis loops displays a two-fold one. The competition between the first and second magnetoerystalline anisotropies may result in the switching of in-plane easy axis of the system. Combining the FMR and VSM measurements, the magnetization reversal mechanism has also been determined. 展开更多
关键词 magnetic anisotropy magnetization reversal ultrathin film
下载PDF
Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction
18
作者 Zhou-Zhou Sun Yu Yang J Schliemann 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期434-442,共9页
We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act ... We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime. 展开更多
关键词 magnetization reversal spin-polarized current Stoner particle
下载PDF
Study of magnetization reversal and anisotropy of single crystalline ultrathin Fe/MgO (001) film by magneto-optic Kerr effect
19
作者 张苗玲 叶军 +5 位作者 刘锐 米菽 谢勇 刘郝亮 Chris Van Haesendonck 陈子瑜 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期370-375,共6页
The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial... The magnetization reversal process of Fe/MgO (001) thin film is investigated by combining transverse and longi- tudinal hysteresis loops. Owing to the competition between domain wall pinning energy and weak uniaxial magnetic anisotropy, the typical magnetization reversal process of Fe ultrathin film can take place via either an "l-jump" process near the easy axis, or a "2-jump" process near the hard axis, depending on the applied field orientation. Besides, the hysteresis loop presents strong asymmetry resulting from the variation of the detected light intensity due to the quadratic magneto-optic effect. Furthermore, we modify the detectable light intensity formula and simulate the hysteresis loops of the Kerr signal. The results show that they are in good agreement with the experimental data. 展开更多
关键词 magnetization reversal process magneto-optic Kerr effect magnetic anisotropy
下载PDF
An Improved Preisach Distribution Function Identification Method Considering the Reversible Magnetization
20
作者 Long Chen Lvsheng Cui +1 位作者 Tong Ben Libing Jing 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第4期351-357,共7页
This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification p... This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification process by stripping the influence of reversible components from the measurement data,the Preisach distribution function is identified by the pure irreversible components.In this way,the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured.Furthermore,through a discrete Preisach plane with a hybrid discretization method,the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model.Finally,the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame. 展开更多
关键词 Magnetic material Preisach distribution function Reversible magnetization Hybrid discretization method
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部