In this article, we study the regularity of weak solutions and the blow-up criteria for smooth solutions to the magneto-micropolar fluid equations in R3. We obtain the classical blow-up criteria for smooth solutions ...In this article, we study the regularity of weak solutions and the blow-up criteria for smooth solutions to the magneto-micropolar fluid equations in R3. We obtain the classical blow-up criteria for smooth solutions (u,w, b), i.e., u ∈ Lq(0, T; LP(R3) for 2/q+3/P≤ 1with 3〈P≤∞,u∈C([0,T);L3(R3))or△u∈Lq(0,T,LP)for 3/2〈P≤∞ satisfying 2/q+3/P≤ 2. Moreover, our results indicate that the regularity of weak solutions is dominated by the velocity u of the fluid. In the end-point case p = ∞, the blow-up criteriacan be extended to more general spaces △u E L1 (0, T; B0∞,∞(R3).展开更多
Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties. The tunable magneto-optic modulation of magnetic fluid under external magnetic field, achieved by adjus...Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties. The tunable magneto-optic modulation of magnetic fluid under external magnetic field, achieved by adjusting the polarization direction of incident light, is investigated theoretically and experimentally in this work. The corresponding modulation depth and response time are obtained. The accompanying mechanisms are clarified by using the theory of dichroism of magtietic fluid and the aggregation/disintegration processes of magnetic particles within magnetic fluid when the external magnetic field turns on/off.展开更多
We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are th...We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.展开更多
The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studi...The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The influences of various micropolar fluid parameters are analyzed on the onset of convection. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.展开更多
The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of ther...The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.展开更多
A generalized model is synthesized to characterize the asymmetric hysteresisforce-velocity (F-v) properties of the magneto-rheological (MR) fluids damper. The model isrepresented as a function of the command current, ...A generalized model is synthesized to characterize the asymmetric hysteresisforce-velocity (F-v) properties of the magneto-rheological (MR) fluids damper. The model isrepresented as a function of the command current, excitation frequency, and displacement amplitude,based on the symmetric and asymmetric sigmoid functions. The symmetric hysteresis damping propertiesof the controllable MR-damper and properties of the conventional passive hydraulic damper can alsobe described by the proposed model. The validity of the model is verified by experiments, which showthat the results calculated from the model are consistent with the measured data. In addition, itis shown that the model applies to a wide vibration frequency range. The proposed model haspotential application in vehicle suspension design employing the symmetry MR-damper, and also indeveloping the asymmetry MR-damper especially for the vehicle suspension attenuation.展开更多
Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics,due to its vast industrial applications.The analysis involves studying ...Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics,due to its vast industrial applications.The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film,film surface profile,shear stress,liquid velocity,volumetric flux,vorticity,gravity,viscosity among others,along with different boundary conditions.In this article,we extend this analysis in fractional space using a homotopy based scheme,considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage on a vertical wall.After applying similarity transformations,the given problems are reduced to highly non-linear and inhomogeneous ordinary differential equations.Moreover,fractional differential equations are obtained using basic definitions of fractional calculus.The Homotopy Perturbation Method(HPM),along with fractional calculus is used for obtaining approximate solutions.Physical quantities such as the velocity profile,volume flux and average velocity respectively for lift and drainage cases have been calculated.To the best of our knowledge,the given problems have not been attempted before in fractional space.Validity and convergence of the obtained solutions are confirmed by finding residual errors.From a physical perspective,a comprehensive study of the effects of various parameters on the velocity profile is also performed.Study reveals that Stokes number St,non-Newtonian parameterand magnetic parameter M have inverse relationship with fluid velocity in lifting case.In the drainage case,Stokes number St and non-Newtonian parameterhave direct relationship with fluid velocity,but magnetic parameter M shows inverse relationship with velocity.The investigation also shows that the fractional parameterhas direct relationship with the fluid velocity in lifting case,while it has inverse relationship with velocity in the drainage case.展开更多
Analytical solutions for the peristaltic flow of a magneto hydrodynamic (MHD) Sisko fluid in a channel, under the effects of strong and weak magnetic fields, are presented. The governing nonlinear problem, for the s...Analytical solutions for the peristaltic flow of a magneto hydrodynamic (MHD) Sisko fluid in a channel, under the effects of strong and weak magnetic fields, are presented. The governing nonlinear problem, for the strong magnetic field, is solved using the matched asymptotic expansion. The solution for the weak magnetic field is obtained using a regular perturbation method. The main observation is the existence of a Hartman boundary layer for the strong magnetic field at the location of the two plates of the channel. The thickness of the Hartmann boundary layer is determined analytically. The effects of a strong magnetic field and the shear thinning parameter of the Sisko fluid on the velocity profile are presented graphically.展开更多
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing...The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically展开更多
The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The g...The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.展开更多
The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considere...The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considered. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. These equations are then solved numerically by an implicit finite-difference scheme known as Keller-Box method. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, velocity exponent parameter, temperature exponent parameter, Modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.展开更多
基金partially supported by the National Natural Science Foun-dation of China (10771052)Program for Science & Technology Innovation Talents in Universities of Henan Province (2009HASTIT007)+1 种基金Doctor Fund of Henan Polytechnic University (B2008-62)Innovation Scientists and Technicians Troop Construction Projects of Henan Province
文摘In this article, we study the regularity of weak solutions and the blow-up criteria for smooth solutions to the magneto-micropolar fluid equations in R3. We obtain the classical blow-up criteria for smooth solutions (u,w, b), i.e., u ∈ Lq(0, T; LP(R3) for 2/q+3/P≤ 1with 3〈P≤∞,u∈C([0,T);L3(R3))or△u∈Lq(0,T,LP)for 3/2〈P≤∞ satisfying 2/q+3/P≤ 2. Moreover, our results indicate that the regularity of weak solutions is dominated by the velocity u of the fluid. In the end-point case p = ∞, the blow-up criteriacan be extended to more general spaces △u E L1 (0, T; B0∞,∞(R3).
基金supported by the National Natural Science Foundation of China (Grant No. 10704048)the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 11YZ120)the Innovation Fund Project for Graduate Student of Shanghai, China (Grant No. JWCXSL1022)
文摘Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties. The tunable magneto-optic modulation of magnetic fluid under external magnetic field, achieved by adjusting the polarization direction of incident light, is investigated theoretically and experimentally in this work. The corresponding modulation depth and response time are obtained. The accompanying mechanisms are clarified by using the theory of dichroism of magtietic fluid and the aggregation/disintegration processes of magnetic particles within magnetic fluid when the external magnetic field turns on/off.
基金Supported by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences under Grant No U1531102the Fundamental Research Funds for the Central Universities under Grant No HEUCF181116the National Natural Science Foundation of China under Grant Nos61107059,61077047 and 11264001
文摘We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.
文摘The effects of result from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law on the Rayleigh-Bénard Magneto-convection in an electrically conducting micropolar fluid is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal or adiabatic temperature on the spin-vanishing boundaries. The influences of various micropolar fluid parameters are analyzed on the onset of convection. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.
文摘The Lie group method is applied to present an analysis of the magneto hydro-dynamics(MHD) steady laminar flow and the heat transfer from a warm laminar liquid flow to a melting moving surface in the presence of thermal radiation.By using the Lie group method,we have presented the transformation groups for the problem apart from the scaling group.The application of this method reduces the partial differential equations(PDEs) with their boundary conditions governing the flow and heat transfer to a system of nonlinear ordinary differential equations(ODEs) with appropriate boundary conditions.The resulting nonlinear system of ODEs is solved numerically using the implicit finite difference method(FDM).The local skin-friction coefficients and the local Nusselt numbers for different physical parameters are presented in a table.
基金This project is supported by Senior Visiting Scholarship of Chinese Scholarship Council (No.20H05002), Provincial Natural Science Foundation of Education Commission of Jiangsu (No.03KJB510072) and Doctoral Scholarship of Concordia University in Canada.
文摘A generalized model is synthesized to characterize the asymmetric hysteresisforce-velocity (F-v) properties of the magneto-rheological (MR) fluids damper. The model isrepresented as a function of the command current, excitation frequency, and displacement amplitude,based on the symmetric and asymmetric sigmoid functions. The symmetric hysteresis damping propertiesof the controllable MR-damper and properties of the conventional passive hydraulic damper can alsobe described by the proposed model. The validity of the model is verified by experiments, which showthat the results calculated from the model are consistent with the measured data. In addition, itis shown that the model applies to a wide vibration frequency range. The proposed model haspotential application in vehicle suspension design employing the symmetry MR-damper, and also indeveloping the asymmetry MR-damper especially for the vehicle suspension attenuation.
文摘Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics,due to its vast industrial applications.The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film,film surface profile,shear stress,liquid velocity,volumetric flux,vorticity,gravity,viscosity among others,along with different boundary conditions.In this article,we extend this analysis in fractional space using a homotopy based scheme,considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage on a vertical wall.After applying similarity transformations,the given problems are reduced to highly non-linear and inhomogeneous ordinary differential equations.Moreover,fractional differential equations are obtained using basic definitions of fractional calculus.The Homotopy Perturbation Method(HPM),along with fractional calculus is used for obtaining approximate solutions.Physical quantities such as the velocity profile,volume flux and average velocity respectively for lift and drainage cases have been calculated.To the best of our knowledge,the given problems have not been attempted before in fractional space.Validity and convergence of the obtained solutions are confirmed by finding residual errors.From a physical perspective,a comprehensive study of the effects of various parameters on the velocity profile is also performed.Study reveals that Stokes number St,non-Newtonian parameterand magnetic parameter M have inverse relationship with fluid velocity in lifting case.In the drainage case,Stokes number St and non-Newtonian parameterhave direct relationship with fluid velocity,but magnetic parameter M shows inverse relationship with velocity.The investigation also shows that the fractional parameterhas direct relationship with the fluid velocity in lifting case,while it has inverse relationship with velocity in the drainage case.
文摘Analytical solutions for the peristaltic flow of a magneto hydrodynamic (MHD) Sisko fluid in a channel, under the effects of strong and weak magnetic fields, are presented. The governing nonlinear problem, for the strong magnetic field, is solved using the matched asymptotic expansion. The solution for the weak magnetic field is obtained using a regular perturbation method. The main observation is the existence of a Hartman boundary layer for the strong magnetic field at the location of the two plates of the channel. The thickness of the Hartmann boundary layer is determined analytically. The effects of a strong magnetic field and the shear thinning parameter of the Sisko fluid on the velocity profile are presented graphically.
文摘The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically
文摘The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, chemical reaction. The governing partial differential equations are converted into ordinary differential equations by using similarity transformations. These equations are then solved numerically by applying finite difference scheme known as the Keller Box method. The effects of various parameters on velocity, temperature and concentration profiles are presented graphically to interpret and the results are discussed.
文摘The problem of magneto-hydrodynamic flow and heat transfer of an electrically conducting non-Newtonian power-law fluid past a non-linearly stretching surface in the presence of a transverse magnetic field is considered. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. These equations are then solved numerically by an implicit finite-difference scheme known as Keller-Box method. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, velocity exponent parameter, temperature exponent parameter, Modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.