Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole...Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.展开更多
We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 ×...We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.展开更多
Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or l...Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.展开更多
The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected t...The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected to Faraday rotation are used as a replacement for electromagnetic transducers due to their immunity to electromagnetic interference. However, the principal parameter in this system, the sensitivity to magnetic fields or current, depends on the Verdet constant, which is low in the case of optical fibers. However, the optical path length can be increased to compensate for it by winding the fiber around a current carrying element a large number of turns. In this work, we study a current sensor, which is made up of a conductor coil with a fiber inside, thus increasing sensitivity. We study the effect of the inhomogeneity of the magnetic field induced by the current on the sensitivity of the optical fiber sensor.展开更多
The magnetic and magneto-optical properties of heavily doped Bi∶YIG film were studied. The film was deposited by radio frequency magnetron sputtering method and crystallized by rapid recurrent thermal annealing (RRTA...The magnetic and magneto-optical properties of heavily doped Bi∶YIG film were studied. The film was deposited by radio frequency magnetron sputtering method and crystallized by rapid recurrent thermal annealing (RRTA). The results show that the RRTA treated film has good properties both in microwave and optical wave band. The saturation magnetization of the film on different substrates varies from 135.7 to 138.6 kA·m-1. The coercive field of the film on GGG substrate is about 0.32 kA·m-1, while about 0.8-1.43 kA·m-1 on YAG substrate and 1.75 kA·m-1 on Al2O3 substrate. The Faraday angle is about 3-5 (°)·μm-1 when optical wavelength ranges at 450-600 nm. The transmission spectra of the Bi∶YIG films on three substrates has similar change as annealing temperature below 800 ℃. Specially, when annealing temperature is above 800 ℃ a step is observed between 550 and 650 nm wavelength for the film deposited on Al2O3 substrate.Three results are very useful in magneto-optical recording application and integrated microwave devices.展开更多
The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare ...The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be.展开更多
In the practical magneto opticaldisk productionline,alloysputteringtargetisalwaysusedtosputter recording film , whileinlaid targetisrarely used .In ourlaboratory,a seriesof al loy targets forsputtering magneto- opti...In the practical magneto opticaldisk productionline,alloysputteringtargetisalwaysusedtosputter recording film , whileinlaid targetisrarely used .In ourlaboratory,a seriesof al loy targets forsputtering magneto- optical recording film were prepared and theeffect ofcomposition andsputtering parameterson magneto opticalpropertiesarestudied . Thesputter ing rateof Al,Siand Tb Fe Co( Mo) undertheconditionsof differentsputtering powerandN2 Argasflux weredetermined and baseontheresults,a variablecomposition andthickness of SiNcan beobtained by meansof regulating sputtering power and gasflux, kindsof Mosputtering filmsareobtained under differentsputtering power and gasflux, and Kerrloop lineofthese magneto opticalfilmsare measuredto acquiretheir propertiessuch as Kerrrota tion,then ,theeffectofsputteringtechnology on Kerrrotationisdiscussed .展开更多
We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coeffic...We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators.展开更多
We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,us...We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.展开更多
Thispaperisconcerned withthe preparation ofcerium doped yttrium iron garnet which areknown to be an oxide withlarge magneto opticaleffect. Usingtheimproved flux method wesuccessfully grew the bulksinglecrystalsofiron...Thispaperisconcerned withthe preparation ofcerium doped yttrium iron garnet which areknown to be an oxide withlarge magneto opticaleffect. Usingtheimproved flux method wesuccessfully grew the bulksinglecrystalsofiron garnet doped by Ce 3 + ions with maximum substitution upto0 349. Here weinvestigatedthedifferentcomposition ofsolution for maxi mum Ce3 + substitution. Thespectra ofthe Faraday rotation andtheoptical absorption were measured inthenearinfrared region fordifferentCe3 + ionsdopediron garnets. The Cesub stitution prominentlyenhancesthe Faradayeffect,andthe Yb and Euionssubstitutefor Yinthe dodecahedralsitesof YIGcanincreasetheconcentration of Ce3 + ions, depresstheforma tion of nonmagnetic Ce4 + ionsbythechargecompensation.展开更多
With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickn...With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickness of Co films and the lattice of voids, different optical modes were introduced. For a very shallow array of voids, the resonant MOKE was induced by Ag plasma edge resonance, for deeper ones, hybrid plasma modes, such as void plasmons in the voids, surface lattice plasmons between the voids, and the co-action of them, etc. resulted in resonant MOKE. We found that resonant MOKE resulted from the void plasmons resonance which possesses the narrowest bandwidth for the lowest absorption of voids. The simulated electromagnetic field(EF) distribution consolidated different effects of these three optical modes on resonant MOKE modulation. Such resonant polar MOKE possesses high sensitivity, which might pave the way to on-chip MO devices.展开更多
Controlling the phase of light in magnetoplasmonic structures is receiving increasing attention because of its already shown capability in ultrasensitive and label-free molecular-level detection.Magneto-optical Kerr r...Controlling the phase of light in magnetoplasmonic structures is receiving increasing attention because of its already shown capability in ultrasensitive and label-free molecular-level detection.Magneto-optical Kerr reversal has been achieved and well explained in nanodisks by using the phase of localized plasmons.In this paper,we report that the Kerr reversal can also be produced by surface plasmon polaritons independently.We experimentally confirm this in Co and Ag/Co/Ag metal nanogratings,and can give a qualitative explanation that it is the charge accumulation at the interface between the grating surface and air that acts as the electromagnetic restoring force to contribute necessary additional phase for Kerr reversal.Our finding can enrich the means of designing and fabricating magneto-optical-based biochemical sensors.展开更多
Heavy-metal-oxide (HMO) glasses attract much interest in many applications such as Faraday rotators, current sensors, etc., in the area of magneto-optic effects due to their unique magnetic-optical property, high refr...Heavy-metal-oxide (HMO) glasses attract much interest in many applications such as Faraday rotators, current sensors, etc., in the area of magneto-optic effects due to their unique magnetic-optical property, high refractive index and other interesting properties. However, during the melt-quenching process of these glasses, the high corrosive nature of the melt to the crucibles makes the fabrication of HMO glasses complicated and the properties of the obtained glasses show strong dependence on the crucible materials. Literatures reported that the gold and platinum crucibles are not suitable due to their contamination to the melt glasses, ceramic crucible was considered suitable for the melting of HMO glasses. In this work, magnetic-optical glasses within the system of PbO-Bi2O3-B2O3 have been prepared using different kinds of ceramic crucibles for the aim of finding the most suitable crucible for melting HMO glasses. The glass properties in terms of Verdet constant, thermal stability and UV-Vis-IR transmittance in function of different crucibles were studied and reported. It was found that the same batch of glasses prepared under same conditions (melting temperature, melting time and annealing process), but in different ceramic crucibles (coded as C1, C2 and C3) showed significant difference in properties such as glass forming ability, thermal stability, optical absorption in UV-Vis-IR and Verdet constant (0.0812 - 0.1483 min/G.cm). The ceramic crucible made of 25%Al2O3 and 75%SiO2 (C2) was found to be the most suitable for PbO-Bi2O3-B2O3 glass preparation, compared with platinum, gold, C1 and C3. Glasses melted with C2 exhibit good performance in magneto and optical property, as well as good thermal stability.展开更多
The magneto-optical Kerr effect of the HfO2/Co/HfO2/A1 multilayer structure is investigated in this work, and an ob- vious cavity enhancement of the Kerr response for the HfO2 semiconductor is found both theoretically...The magneto-optical Kerr effect of the HfO2/Co/HfO2/A1 multilayer structure is investigated in this work, and an ob- vious cavity enhancement of the Kerr response for the HfO2 semiconductor is found both theoretically and experimentally. Surprisingly, a maximum value of about -3 of the polar Kerr rotation for s-polarized incident light is observed in our experiment. We propose that this improvement on the Kerr effect can be attributed to the multiple reflection and optical interference in the cavity, which can also be proved by simulation using the finite element method.展开更多
Co double layer film (CoDLF) consisting of a disk-array layer and an antidot-array layer, both with square order, was investigated. Both the reflectivity and Kerr spectra of CoDLF show anisotropic effects when the a...Co double layer film (CoDLF) consisting of a disk-array layer and an antidot-array layer, both with square order, was investigated. Both the reflectivity and Kerr spectra of CoDLF show anisotropic effects when the azimuthal angle of incident light changes. From the simulation result of surface plasmon polaritons (SPPs), we attribute the reflectivity minima and Kerr angle maxima in the spectra mainly to the excitation of different diffractional orders' SPPs. More interestingly, the Kerr angle changes sign at specific wavelengths. We attribute these phenomena to the excitation of SPPs and localized surface plasmons (LSPs), and the interaction between them.展开更多
Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control para...Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.展开更多
This paper introduces the fundamental principle and features ofmagneto-optical storage technol- ogy, and discuses the trend and aseries of key techniques for increasing the data storage density ofmagneto-opti- cal dis...This paper introduces the fundamental principle and features ofmagneto-optical storage technol- ogy, and discuses the trend and aseries of key techniques for increasing the data storage density ofmagneto-opti- cal disk. The three ways including MO media, recordingmethod and readout method for increasing the disk ca- pacity havebeen discussed. Moreover, the importance with the exchange-coupledeffect between the magnetic layers and recording domain morphology isemphasized.展开更多
Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and ex...Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.展开更多
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These a...This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 60578018 and 10434080)the project for excellent research team from the National Natural Science Foundation of China (Grant No 60821004)+4 种基金the Program for New Century Excellent Talents of the Education Ministry of China (Grant No NCET-07-0524)the State Basic Key Research Program of China (Grant No 2006CB921102)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No 20070108003)the Natural Science Foundation of Shanxi Province,China (Grant No 2007011003)the Scientific Research Funds for Returned Scholars Abroad of Shanxi Province,China
文摘Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.
基金Project supported by the Natural Science Foundation of China (Grant Nos 60578018 10434080, and 10374062), the Sino-Russia Joint Project (NSFC-RFBR), by the Key Scientific Project of the Education Ministry of China (Grant No 204019), the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No 705010) and the Program for Innovative Research Team in University (IRT0516) from the Education Ministry of China, and also by the Research Funds for Youth Academic Leaders of Shanxi Province.
文摘We have established a caesium double magneto-optical trap (MOT) system for cavity-QED experiment, and demonstrated the continuous transfer of cold caesium atoms from the vapour-cell MOT with a pressure of - 1 × 10^-6 Pa to the ultra-high-vacuum (UHV) MOT with a pressure of - 8 × 10^-8 Pa via a focused continuous-wave transfer laser beam. The effect of frequency detuning as well as the intensity of the transfer beam is systematically investigated, which makes the transverse cooling adequate before the atoms leak out of the vapour-cell MOT to reduce divergence of the cold atomic beam. The typical cold atomic flux got from vapour-cell MOT is - 2 × 10^7 atoms/s. About 5 × 10^6 caesium atoms are recaptured in the UHV MOT.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60578018 and 10434080)the State Key Research Program of China (Grant No 2006CB921102)+2 种基金the Program for New Century Excellent Talents of the Education Ministry, China (Grant No NCET-07-0524)the Specialized Research Fund for the Doctoral Program of China (Grant No 20070108003)the Natural Science Foundation of Shanxi Province, China (Grant No 2007011003)
文摘Single caesium atoms in a large-magnetic-gradient vapour-cell magneto-optical trap have been identified. The trapping of individual atoms is marked by the steps in fluorescence signal corresponding to the capture or loss of single atoms. The typical magnetic gradient is about 29 mT/cm, which evidently reduces the capture rate of magneto-optical trap.
文摘The growth in the capacity of electric power system creates a demand for the protection of relaying systems. Optical current transducers—OCT that are mainly made up of single mode optical fibers which are subjected to Faraday rotation are used as a replacement for electromagnetic transducers due to their immunity to electromagnetic interference. However, the principal parameter in this system, the sensitivity to magnetic fields or current, depends on the Verdet constant, which is low in the case of optical fibers. However, the optical path length can be increased to compensate for it by winding the fiber around a current carrying element a large number of turns. In this work, we study a current sensor, which is made up of a conductor coil with a fiber inside, thus increasing sensitivity. We study the effect of the inhomogeneity of the magnetic field induced by the current on the sensitivity of the optical fiber sensor.
基金This work was supported by the National Natural Science Foundation of China (No.60425102)
文摘The magnetic and magneto-optical properties of heavily doped Bi∶YIG film were studied. The film was deposited by radio frequency magnetron sputtering method and crystallized by rapid recurrent thermal annealing (RRTA). The results show that the RRTA treated film has good properties both in microwave and optical wave band. The saturation magnetization of the film on different substrates varies from 135.7 to 138.6 kA·m-1. The coercive field of the film on GGG substrate is about 0.32 kA·m-1, while about 0.8-1.43 kA·m-1 on YAG substrate and 1.75 kA·m-1 on Al2O3 substrate. The Faraday angle is about 3-5 (°)·μm-1 when optical wavelength ranges at 450-600 nm. The transmission spectra of the Bi∶YIG films on three substrates has similar change as annealing temperature below 800 ℃. Specially, when annealing temperature is above 800 ℃ a step is observed between 550 and 650 nm wavelength for the film deposited on Al2O3 substrate.Three results are very useful in magneto-optical recording application and integrated microwave devices.
文摘The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be.
文摘In the practical magneto opticaldisk productionline,alloysputteringtargetisalwaysusedtosputter recording film , whileinlaid targetisrarely used .In ourlaboratory,a seriesof al loy targets forsputtering magneto- optical recording film were prepared and theeffect ofcomposition andsputtering parameterson magneto opticalpropertiesarestudied . Thesputter ing rateof Al,Siand Tb Fe Co( Mo) undertheconditionsof differentsputtering powerandN2 Argasflux weredetermined and baseontheresults,a variablecomposition andthickness of SiNcan beobtained by meansof regulating sputtering power and gasflux, kindsof Mosputtering filmsareobtained under differentsputtering power and gasflux, and Kerrloop lineofthese magneto opticalfilmsare measuredto acquiretheir propertiessuch as Kerrrota tion,then ,theeffectofsputteringtechnology on Kerrrotationisdiscussed .
文摘We investigate the non-reciprocal transmission properties of a three-layer structure filled with magneto–optical medium and normal medium. Based on the transfer matrix method, we deduce the total transmission coefficient for a one-dimensional(1 D) structure with anisotropic mediums. When two-side layers with magneto–optical medium loaded in opposite external magnetic field, the time-reversal symmetry of transmission properties will be broken. Our numerical results show that the non-reciprocal transmission properties are influenced by external magnetic fields, incident angle, and thickness of the normal medium layer. Since the non-reciprocal properties can be easily realized and adjusted by the simple structure, such a design has potential applications in integrated circulators and isolators.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304177)
文摘We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.
文摘Thispaperisconcerned withthe preparation ofcerium doped yttrium iron garnet which areknown to be an oxide withlarge magneto opticaleffect. Usingtheimproved flux method wesuccessfully grew the bulksinglecrystalsofiron garnet doped by Ce 3 + ions with maximum substitution upto0 349. Here weinvestigatedthedifferentcomposition ofsolution for maxi mum Ce3 + substitution. Thespectra ofthe Faraday rotation andtheoptical absorption were measured inthenearinfrared region fordifferentCe3 + ionsdopediron garnets. The Cesub stitution prominentlyenhancesthe Faradayeffect,andthe Yb and Euionssubstitutefor Yinthe dodecahedralsitesof YIGcanincreasetheconcentration of Ce3 + ions, depresstheforma tion of nonmagnetic Ce4 + ionsbythechargecompensation.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2015AM024)the Doctoral Research Started Funding of Qufu Normal University,China(Grant No.BSQD20130152)
文摘With nanovoids buried in Co films, resonant structures were observed in spectra of polar magneto-optical Kerr effect(MOKE), where both a narrow bandwidth and high intensity were acquired. Through changing the thickness of Co films and the lattice of voids, different optical modes were introduced. For a very shallow array of voids, the resonant MOKE was induced by Ag plasma edge resonance, for deeper ones, hybrid plasma modes, such as void plasmons in the voids, surface lattice plasmons between the voids, and the co-action of them, etc. resulted in resonant MOKE. We found that resonant MOKE resulted from the void plasmons resonance which possesses the narrowest bandwidth for the lowest absorption of voids. The simulated electromagnetic field(EF) distribution consolidated different effects of these three optical modes on resonant MOKE modulation. Such resonant polar MOKE possesses high sensitivity, which might pave the way to on-chip MO devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374146)the China Postdoctoral Science Foundation(Grant No.2018M632278)the Jiangsu Provincial Planned Projects for Postdoctoral Research Funds,China(Grant No.1701092C)
文摘Controlling the phase of light in magnetoplasmonic structures is receiving increasing attention because of its already shown capability in ultrasensitive and label-free molecular-level detection.Magneto-optical Kerr reversal has been achieved and well explained in nanodisks by using the phase of localized plasmons.In this paper,we report that the Kerr reversal can also be produced by surface plasmon polaritons independently.We experimentally confirm this in Co and Ag/Co/Ag metal nanogratings,and can give a qualitative explanation that it is the charge accumulation at the interface between the grating surface and air that acts as the electromagnetic restoring force to contribute necessary additional phase for Kerr reversal.Our finding can enrich the means of designing and fabricating magneto-optical-based biochemical sensors.
文摘Heavy-metal-oxide (HMO) glasses attract much interest in many applications such as Faraday rotators, current sensors, etc., in the area of magneto-optic effects due to their unique magnetic-optical property, high refractive index and other interesting properties. However, during the melt-quenching process of these glasses, the high corrosive nature of the melt to the crucibles makes the fabrication of HMO glasses complicated and the properties of the obtained glasses show strong dependence on the crucible materials. Literatures reported that the gold and platinum crucibles are not suitable due to their contamination to the melt glasses, ceramic crucible was considered suitable for the melting of HMO glasses. In this work, magnetic-optical glasses within the system of PbO-Bi2O3-B2O3 have been prepared using different kinds of ceramic crucibles for the aim of finding the most suitable crucible for melting HMO glasses. The glass properties in terms of Verdet constant, thermal stability and UV-Vis-IR transmittance in function of different crucibles were studied and reported. It was found that the same batch of glasses prepared under same conditions (melting temperature, melting time and annealing process), but in different ceramic crucibles (coded as C1, C2 and C3) showed significant difference in properties such as glass forming ability, thermal stability, optical absorption in UV-Vis-IR and Verdet constant (0.0812 - 0.1483 min/G.cm). The ceramic crucible made of 25%Al2O3 and 75%SiO2 (C2) was found to be the most suitable for PbO-Bi2O3-B2O3 glass preparation, compared with platinum, gold, C1 and C3. Glasses melted with C2 exhibit good performance in magneto and optical property, as well as good thermal stability.
基金supported by the National Key Project of Fundamental Research of China(Grant Nos.2012CB932304 and 2010CB923404)the National Natural Science Foundation of China(Grant Nos.50971070 and U1232210)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The magneto-optical Kerr effect of the HfO2/Co/HfO2/A1 multilayer structure is investigated in this work, and an ob- vious cavity enhancement of the Kerr response for the HfO2 semiconductor is found both theoretically and experimentally. Surprisingly, a maximum value of about -3 of the polar Kerr rotation for s-polarized incident light is observed in our experiment. We propose that this improvement on the Kerr effect can be attributed to the multiple reflection and optical interference in the cavity, which can also be proved by simulation using the finite element method.
基金Project supported by the National Key Project of Fundamental Research of China(Grant Nos.2012CB932304 and 2010CB923404)the National Natural Science Foundation of China(Grant Nos.11374146 and U1232210)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Co double layer film (CoDLF) consisting of a disk-array layer and an antidot-array layer, both with square order, was investigated. Both the reflectivity and Kerr spectra of CoDLF show anisotropic effects when the azimuthal angle of incident light changes. From the simulation result of surface plasmon polaritons (SPPs), we attribute the reflectivity minima and Kerr angle maxima in the spectra mainly to the excitation of different diffractional orders' SPPs. More interestingly, the Kerr angle changes sign at specific wavelengths. We attribute these phenomena to the excitation of SPPs and localized surface plasmons (LSPs), and the interaction between them.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z319)the National Basic Research Program of China (Grant No. 2006CB921603)+4 种基金the National Natural Science Foundation of China (Grant Nos. 61008012,11074154,10934004,60978018,60978001,and 60808009)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)the National Natural Science Foundation for Excellent Research Team (Grant No. 60821004)the New Teacher Foundation of the Ministry of Education of China (Grant No. 20101401120004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘Loading time is one of the most important dynamic characteristics of a magneto-optical trap. In this paper, we primarily report on a detailed experimental study of the effects of some magneto-optical trap control parameters on loading time, including the background vacuum pressure, the magnetic field gradient, and the intensities of trapping and repumping lasers. We compare the results with previous theoretical and experimental results, and give qualitative analysis. These experimental investigations offer some useful guidelines to coatrol the loading time of magneto-optical traps. The controllable loading time achieved is helpful to enhance the signal-to-noise ratio of photoassociation spectroscopy, which is remarkably improved from 7 to 28.6.
文摘This paper introduces the fundamental principle and features ofmagneto-optical storage technol- ogy, and discuses the trend and aseries of key techniques for increasing the data storage density ofmagneto-opti- cal disk. The three ways including MO media, recordingmethod and readout method for increasing the disk ca- pacity havebeen discussed. Moreover, the importance with the exchange-coupledeffect between the magnetic layers and recording domain morphology isemphasized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536218,11374100,10904037,10974055,11034002,and 11274114)the National Key Basic Research and Development Program of China(Grant No.2011CB921602)the Natural Science Foundation of Shanghai Municipality,China(Grant No.13ZR1412800)
文摘Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment.
基金Project supported by the Shanghai Pujiang Programme and the National Basic Research Programme of China (Grant No 2005CB724506)the National Natural Science Foundation of China (Grant No 10604057)
文摘This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.